已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x,使得
f(x+1)=f(x)+f(1)成立。
(1)函數(shù)f(x)=是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg,求實(shí)數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2+xM。
解:(Ⅰ)f(x)=的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052118273109378473/SYS201205211829215937844926_DA.files/image002.png">,
令,整理得x+x+1=0,△=-3<0,
因此,不存在x使得f(x+1)=f(x)+f(1)成立,所以f(x)=; 3分
(Ⅱ)f(x)=lg的定義域?yàn)椋,f(1)=lg,a>0,
若f(x)= lgM,則存在xR使得lg=lg+lg,
整理得存在xR使得(a-2a)x+2ax+(2a-2a)=0.
(1)若a-2a=0即a=2時(shí),方程化為8x+4=0,解得x=-,滿足條件:
(2)若a-2a0即a時(shí),令△≥0,解得a,綜上,a[3-,3+]; 7分
(Ⅲ)f(x)=2+x的定義域?yàn)椋遥?/p>
令2+(x+1)=(2+x)+(2+1),整理得2+2x-2=0,
令g(x)=2+2x-2,所以g(0)·g(1)=-2<0,
即存在x(0,1)使得g(x)=2+2x-2=0,
亦即存在xR使得2+(x+1)=(2+x)+(2+1),故f(x)=2+xM。 10分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
x |
a |
x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
k | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京四中2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044
已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg,求實(shí)數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2x+x2∈M.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com