11.若橢圓的兩個(gè)焦點(diǎn)恰好將長軸三等分,則此橢圓的離心率是$\frac{1}{3}$.

分析 設(shè)橢圓的長軸長為2a,焦距為2c,由題意可得a-c=2c,運(yùn)用離心率公式計(jì)算即可得到.

解答 解:設(shè)橢圓的長軸長為2a,焦距為2c,
則依題意有$\frac{a-c}{2c}$=1,
即a=3c,
得e=$\frac{c}{a}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查橢圓的離心率的求法,考查橢圓的性質(zhì)和運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列三個(gè)結(jié)論:
①若命題p:?x0∈R,x${\;}_{0}^{2}$+x0+1≤0,則¬p:?x∈R,x2+x+1>0;
②命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的否命題為:“若m≤0,則方程x2+x-m=0沒有實(shí)數(shù)根”;
③命題p:a=1是x>0,x+$\frac{a}{x}$≥2恒成立的充要條件.
其中正確的是( 。
A.B.②③C.①②D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=a2x-1(a>0且a≠1)過定點(diǎn)( 。
A.(1,1)B.($\frac{1}{2}$,0)C.(1,0)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$•$\frac{(\sqrt{4a^{-1}})^{3}}{0.{1}^{-2}({a}^{3}^{-3})^{\frac{1}{2}}}$(a>0,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式x(x-2)≤0的解集是(  )
A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中正確的個(gè)數(shù)是(  )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α;
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,連接橢圓C的四個(gè)頂點(diǎn)所形成的四邊形面積為4$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過橢圓C的下頂點(diǎn)A作兩條互相垂直的直線,分別交橢圓C于點(diǎn)M,N,設(shè)直線AM的斜率為k,直線l:y=$\frac{{k}^{2}-1}{k}$x分別與直線AM,AN交于點(diǎn)P,Q,記△AMN,△APQ的面積分別為S1,S2,是否存在直線l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直三棱錐ABC-A1B1C1中,AA1=AB=AC=2,E,F(xiàn)分別是CC1,BC的中點(diǎn),AE⊥A1B1,D為棱A1B1上的點(diǎn).
(1)證明:DF⊥AE;
(2)是否存在一點(diǎn)D,使得平面DEF與平面ABC夾角的余弦值為$\frac{\sqrt{14}}{14}$?若存在,說明點(diǎn)D的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a=1,b=4.試求函數(shù)f(x)的值域;
(2)記|f(x)|的最大值為M,對任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

同步練習(xí)冊答案