(2013•濟南一模)若雙曲線
x2
9
-
y2
16
=1漸近線上的一個動點P總在平面區(qū)域(x-m)2+y2≥16內(nèi),則實數(shù)m的取值范圍是
{m|m>5或m<-5}
{m|m>5或m<-5}
分析:求出雙曲線的漸近線方程,由題意畫出圖形,即可求解m的取值范圍.
解答:解:雙曲線
x2
9
-
y2
16
=1漸近線為:y=±
4
3
x
,
因為雙曲線
x2
9
-
y2
16
=1漸近線上的一個動點P總在平面區(qū)域(x-m)2+y2≥16內(nèi),
如圖:只需圓心到直線的距離大于半徑即可,
圓的圓心坐標(m,0)圓的半徑為:4,
所以
|4m|
32+42
>4
,解得:m>5或m<-5.
實數(shù)m的取值范圍是:{m|m>5或m<-5}.
故答案為:{m|m>5或m<-5}.
點評:本題考查雙曲線的簡單性質(zhì)的應用,圓的方程的應用以及線性規(guī)劃的應用,考查分析問題解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)“a=1”是“函數(shù)f(x)=|x-a|在區(qū)間[2,+∞)上為增函數(shù)”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)已知實數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤8
,則目標函數(shù)z=x-y的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)等差數(shù)列{an}中,a2+a8=4,則它的前9項和S9=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)已知拋物線y2=4x的焦點F恰好是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右頂點,且漸近線方程為y=±
3
x,則雙曲線方程為
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•濟南一模)函數(shù)y=sin(
π2
x+φ)(φ>0)的部分圖象如圖所示,設P是圖象的最高點,A,B是圖象與x軸的交點,則tan∠APB=
-2
-2

查看答案和解析>>

同步練習冊答案