已知
e1
e2
是平面內(nèi)的一組基底,α是平面中的一個(gè)向量,則滿足α=x
e1
+y
e2
的實(shí)數(shù)x、y共有
 
對(duì).
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:首先,根據(jù)基底的概念,并結(jié)合平面向量基本定理,容易得到答案.
解答: 解:∵
e1
,
e2
是平面內(nèi)的一組基底,
∴根據(jù)平面向量基本定理,得
α=x
e1
+y
e2

且實(shí)數(shù)x、y是唯一確定的,
故答案為:1.
點(diǎn)評(píng):本題重點(diǎn)考查了平面向量基本定理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定圓A:(x+1)2+y2=8的圓心為A,動(dòng)圓M過(guò)點(diǎn)B(1,0),且于圓A相切,動(dòng)圓的圓心M的軌跡的方程為C,
(1)求曲線C的軌跡方程;
(2)直線l過(guò)點(diǎn)(0,t)且與曲線C交于P,Q兩點(diǎn),探究:是否存在實(shí)數(shù)t,使得點(diǎn)N(0,-1)在以PQ為直徑的圓上,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(a+1)x(a≥1).
(1)討論f(x)的單調(diào)性與極值點(diǎn);
(2)若g(x)=
1
2
x2-x-1(x>1),證明:當(dāng)a=1時(shí),g(x)的圖象恒在f(x)的圖象上方;
(3)證明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某水泥廠甲、乙兩個(gè)車(chē)間包裝水泥,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99
乙:110,115,90,85,75,115,110
(Ⅰ)畫(huà)出這兩組數(shù)據(jù)的莖葉圖;
(Ⅱ)求出這兩組數(shù)據(jù)的平均值和方差(用分?jǐn)?shù)表示);并說(shuō)明哪個(gè)車(chē)間的產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定函數(shù)f(x)和常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類(lèi)好數(shù)對(duì)”.已知函數(shù)f(x)的定義域?yàn)閇1,+∞).
(Ⅰ)若(1,1)是函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”,且f(1)=3,求f(16);
(Ⅱ)若(2,0)是函數(shù)f(x)的一個(gè)“好數(shù)對(duì)”,且當(dāng)1<x≤2時(shí),f(x)=
2x-x2
,求證:函數(shù)y=f(x)-x在區(qū)間(1,+∞)上無(wú)零點(diǎn);
(Ⅲ)若(2,-2)是函數(shù)f(x)的一個(gè)“類(lèi)好數(shù)對(duì)”,f(1)=3,且函數(shù)f(x)單調(diào)遞增,比較f(x)與
x
2
+2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式4≤f(x)≤16在x∈[1,2]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2cos(ωx+φ)對(duì)任意的x∈R,都有f(
π
3
+x
)=f(
π
3
-x
),若設(shè)函數(shù)g(x)=3sin(ωx+φ)-1,則g(
π
3
)的值時(shí)( 。
A、2
B、-4或2
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ+cosθ=-
3
17
,則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(3,-2),B(-2,1),C(7,-4),D(10,12),若
AD
AB
AC
,則λ,μ的值分別為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案