平面內(nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線(xiàn),此外再無(wú)任何3點(diǎn)共線(xiàn),以這些點(diǎn)為頂點(diǎn),可得
 
個(gè)不同的三角形?
考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題
專(zhuān)題:排列組合
分析:因?yàn)槠矫鎯?nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線(xiàn),此外再無(wú)任何3點(diǎn)共線(xiàn),構(gòu)成三角形需要3個(gè)點(diǎn),因此需要分類(lèi),在共線(xiàn)的4個(gè)點(diǎn)中取一個(gè)或取兩個(gè),根據(jù)分類(lèi)計(jì)數(shù)原理可得.
解答: 解:平面內(nèi)有12個(gè)點(diǎn),其中有4個(gè)點(diǎn)共線(xiàn),此外再無(wú)任何3點(diǎn)共線(xiàn),構(gòu)成三角形需要3個(gè)點(diǎn),因此需要分兩類(lèi)類(lèi),在共線(xiàn)的4個(gè)點(diǎn)中取一個(gè)或取兩個(gè).
第一類(lèi),共線(xiàn)的4個(gè)點(diǎn)中取一個(gè)點(diǎn),再剩下的8個(gè)點(diǎn)中取2個(gè),則有
C
1
4
C
2
8
=112個(gè)不同的三角形.
第二類(lèi),共線(xiàn)的4個(gè)點(diǎn)中取兩個(gè)點(diǎn),再剩下的8個(gè)點(diǎn)中取1個(gè),則有
C
2
4
C
1
8
=48個(gè)不同的三角形.
根據(jù)分類(lèi)計(jì)數(shù)原理,可得112+48=160個(gè)不同的三角形.
故答案為:160.
點(diǎn)評(píng):本題主要考查了分類(lèi)計(jì)數(shù)原理,如何分類(lèi)是關(guān)鍵,分類(lèi)時(shí)要不重不漏,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值表:
X -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
F(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89
則函數(shù)f(x)至少有
 
個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高一年1班參加“唱響校園,放飛夢(mèng)想”歌詠比賽,得分情況如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時(shí),f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),1大拇指,2食指,3中指,4無(wú)名指,5小指,6無(wú)名指…一直數(shù)到2013時(shí),對(duì)應(yīng)的指頭是
 
(填指頭的名稱(chēng)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x
a
12t2dt且
1
0
f(x)dx=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,Sn是前n項(xiàng)和,a1=-2014,
S2014
2014
-
S2012
2012
=2,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銳角三角形△ABC中,若A=2B,則下列敘述正確的是
 

①sin3B=sinC    
②tan
3B
2
tan
C
2
=1    
π
6
<B<
π
4
    
a
b
∈[
2
,
3
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若直線(xiàn)l1
x=2s+1
y=s
(s為參數(shù))和直線(xiàn)l1
x=at
y=2t-1
(t為參數(shù))平行,則常數(shù)a的值為( 。
A、8B、6C、2D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案