對于函數(shù)f(x)=ax2+b|x-m|+c  (其中a、b、m、c為常數(shù),x∈R),有下列三個命題:
(1)若f(x)為偶函數(shù),則m=0;
(2)不存在實數(shù)a、b、m、c,使f(x)是奇函數(shù)而不是偶函數(shù);
(3)f(x)不可以既是奇函數(shù)又是偶函數(shù).其中真命題的個數(shù)為( 。
分析:(1)若f(x)為偶函數(shù),則f(-x)=f(x),代入可求
(2)若f(x)是奇函數(shù)而不是偶函數(shù)則f(0)=b|m|+c=0且bm≠0,此時f(x)=b|x-m|-b|m|不可能是奇函數(shù)
(3)若f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0,只要a=b=c=0,從而可判斷
解答:解:(1)若f(x)為偶函數(shù),則f(-x)=f(x),
∴a(-x)2+b|-x-m|+c=ax2+b|x-m|+c
∴b|x-m|=b|x+m|
∴m=0或b=0
故(1)錯誤
(2)若f(x)是奇函數(shù)而不是偶函數(shù)則f(0)=b|m|+c=0且bm≠0
此時f(x)=b|x-m|-b|m|不可能是奇函數(shù),故(2)正確
(3)若f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0
此時只要a=b=c=0,m為任意的數(shù),故(3)錯誤
故選:B
點評:本題主要考查了函數(shù)的奇偶性的判斷在解題中的應(yīng)用,解題的關(guān)鍵是靈活利用奇函數(shù)與偶函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)
(1)求函數(shù)f(x)的定義域和值域;
(2)探索函數(shù)f(x)的單調(diào)性,并寫出探索過程;
(3)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在求出a的值,不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
22x+1
(a∈R)

(1)探索函數(shù)f(x)的單調(diào)性
(2)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù),若存在,求出a的取值;若不存在,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性并證明;
(Ⅱ) 是否存在實數(shù)a,使得f(x)為奇函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a-
2•2x2x+1
(a∈R).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性并證明;
(Ⅱ)是否存在實數(shù)a,使得f(x)為奇函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=a x2+(b+1)x+b-2(a≠0),若存在實數(shù) x0,使f( x0)=x0成立,則稱 x0為f(x)的不動點
(1)當(dāng)a=2,b=-2時,求f(x)的不動點;
(2)若對于任何實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求實數(shù)a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案