19.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{44}{3}$

分析 該幾何體是一個直三棱柱截去一個小三棱錐,利用體積計(jì)算公式即可得出.

解答 解:該幾何體是一個直三棱柱截去一個小三棱錐,
則其體積為:V=$\frac{1}{2}×4×2×4$-$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{44}{3}$,
故答案為$\frac{44}{3}$.

點(diǎn)評 本題考查了三棱錐與三棱柱的三視圖與體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某次數(shù)學(xué)測驗(yàn)后,數(shù)學(xué)老師統(tǒng)計(jì)了本班學(xué)生對選做題的選做情況,得到如表數(shù)據(jù):(單位:人)
坐標(biāo)系與參數(shù)方程不等式選講合計(jì)
男同學(xué)22830
女同學(xué)81220             
合計(jì)302050
(I)請完成題中的2×2列聯(lián)表;并根據(jù)表中的數(shù)據(jù)判斷,是否有超過97.5%的把握認(rèn)為選做“坐標(biāo)系與參數(shù)方程”或“不等式選講”與性別有關(guān)?
(II)經(jīng)過多次測試后,甲同學(xué)發(fā)現(xiàn)自己解答一道“坐標(biāo)系與參數(shù)方程”所用的時間為區(qū)間[5,7]內(nèi)一個隨機(jī)值(單位:分鐘),解答一道“不等式選講”所用的時間為區(qū)間[6,8]內(nèi)一個隨機(jī)值(單位:分鐘),試求甲在考試中選做“坐標(biāo)系與參數(shù)方程”比選做“不等式選講”所用時間更長的概率.
附表及公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=$\frac{1}{2}$BC.
(1)求證:CD⊥平面PBD;
(2)已知點(diǎn)Q在PC上,若AC與BD交于點(diǎn)O,且AP∥平面BDQ,求證:OQ∥平面APD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20等于(  )
A.7B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)F作該雙曲線一條漸近線的垂線交此漸近線于點(diǎn)M,若O為坐標(biāo)原點(diǎn),△OFM的面積是$\frac{1}{2}{a^2}$,則該雙曲線的離心率是( 。
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正實(shí)數(shù)x,y滿足$\frac{2}{x}+\frac{1}{y}=1$,若x+2y>m2+2m恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-2,4)B.(-4,2)C.(-∞,2]∪[4,+∞)D.(-∞,-4]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為45°,若E是PB的中點(diǎn),則異面直線DE與PA所成角的余弦值為(  )
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若對于任意的x>0,不等式$\frac{x}{{x}^{2}+3x+1}$≤a恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.a≥$\frac{1}{5}$B.a>$\frac{1}{5}$C.a<$\frac{1}{5}$D.a≤$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0≤x≤a}\\{lo{g}_{3}x,x>a}\end{array}\right.$,其中a>0
①若a=3,則f[f(9)]=$\sqrt{2}$;
②若函數(shù)y=f(x)-2有兩個零點(diǎn),則a的取值范圍是[4,9).

查看答案和解析>>

同步練習(xí)冊答案