1.如圖所示是一個幾何體的三視圖,則這個幾何體的體積為$\frac{57}{2}$.

分析 首先還原幾何體為正方體和三棱錐的組合體,分別計算體積得到所求.

解答 解:由三視圖得到幾何體如圖:
其體積為${3}^{3}+\frac{1}{3}×\frac{1}{2}×3×3×1=\frac{57}{2}$;
故答案為:$\frac{57}{2}$

點評 本題考查了由幾何體的三視圖求幾何體的體積;關(guān)鍵是正確還原幾何體.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某市組織一次高三調(diào)研考試,考試后統(tǒng)計的數(shù)學(xué)成績服從正態(tài)分布,其密度函數(shù)為f(x)=$\frac{1}{10\sqrt{2π}}$e${\;}^{-\frac{(x-80)^{2}}{200}}$,則下列命題中不正確的是( 。
A.該市在這次考試的數(shù)學(xué)平均成績?yōu)?0分
B.分?jǐn)?shù)在120分以上的人數(shù)與分?jǐn)?shù)在60分以下的人數(shù)相同
C.分?jǐn)?shù)在110分以上的人數(shù)與分?jǐn)?shù)在50分以下的人數(shù)相同
D.該市這次考試的數(shù)學(xué)成績標(biāo)準(zhǔn)差為10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四邊形ABCD為菱形,平面ABCD外一點P,PB⊥AD,△PAD為邊長等于2的正三角形,且PB在平面ABCD的射影長等于$\frac{3}{2}\sqrt{3}$.
(I)求點P到平面ABCD的距離;
(II)求PC與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=x2,則f′(1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=alnx+\frac{{2{a^2}}}{x}+x(a≠0)$.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數(shù)a的值;
(2)a<0時,判斷函數(shù)f(x)的單調(diào)性;
(3)當(dāng)a∈(-∞,0)時,記函數(shù)f(x)的最小值為g(a),求證:$g(a)≤\frac{1}{2}{e^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個焦點分別為F1、F2,以線段F1F2為直徑的圓與雙曲線的漸近線在第一象限的交點為M,若|MF1|-|MF2|=2b,該雙曲線的離心率為e,則e2=( 。
A.2B.$\frac{\sqrt{2}+1}{2}$C.$\frac{3+2\sqrt{2}}{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某地區(qū)2012年至2016年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份20122013201420152016
年份代號t12345
人均純收入y567810
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)農(nóng)村居民家庭人均純收入在哪一年約為10.8千元.
附:回歸直線的斜率和截距的最小二乘估計公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tanα=3,求值:
(1)$\frac{sinα+cosα}{2sinα-cosα}$
(2)sin2α+sinαcosα+3cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,角A、B、C所對的邊分別是a、b、c,若a=2,A=$\frac{π}{6}$,則△ABC外接圓的面積等于(  )
A.$\frac{π}{4}$B.πC.D.16π

查看答案和解析>>

同步練習(xí)冊答案