(2010•珠海二模)如圖是兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),在兩個(gè)圖中的四個(gè)扇形區(qū)域的圓心角分別為60°、120°、90°90°.用這兩個(gè)轉(zhuǎn)盤(pán)進(jìn)行玩游戲,規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)待指針停下(當(dāng)兩個(gè)轉(zhuǎn)盤(pán)中任意一個(gè)指針恰好落在分界線(xiàn)時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的區(qū)域數(shù)為x,轉(zhuǎn)盤(pán)(B)指針?biāo)鶎?duì)的區(qū)域數(shù)為y,x、y∈{1,2,3,4},設(shè)x+y的值為ξ,每一次游戲得到獎(jiǎng)勵(lì)分為ξ.
(1)求x<3且y>2的概率;
(2)某人進(jìn)行了6次游戲,求他平均可以得到的獎(jiǎng)勵(lì)分.
分析:(1)在兩個(gè)圖中的四個(gè)扇形區(qū)域的圓心角分別為60°、120°、90°、90°,根據(jù)圓心角度數(shù),求出x和y取不同值時(shí)的概率,根據(jù)互斥事件的概率求出結(jié)論.
(2)由條件可知ξ的取值為:2、3、4、5、6、7、8,當(dāng)ξ=2時(shí),即x=1且y=1,根據(jù)獨(dú)立事件同時(shí)發(fā)生的概率公式求出ξ=2的概率,用同樣的方法可以求出其他值對(duì)應(yīng)的概率,寫(xiě)出分布列和期望,估計(jì)平均可以得到的獎(jiǎng)勵(lì)分.
解答:(本小題滿(mǎn)分12分)
解:(1)由幾何概率模型可知:
P(x=1)=
1
6
,P(x=2)=
1
3
,P(x=3)=
1
4
,P(x=4)=
1
4
;
P(y=1)=
1
3
,P(y=2)=
1
4
,P(y=3)=
1
4
,P(y=4)=
1
6

P(x<3)=P(x=1)+P(x=2)=
1
2
,P(y>2)=P(y=3)+p(y=4)=
5
12
,
P(x<3,y>2)=P(x<3)•P(y>2)=
5
24

(2)由條件可知ξ的可能取值為:2、3、4、5、6、7、8,則:…(6分)
P(ξ=2)=P(x=1)•P(y=1)=
1
3
×
1
6
=
1
18
,
P(ξ=3)=P(x=1)P(y=2)+P(x=2)P(y=1)=
1
4
×
1
6
+
1
3
×
1
3
=
11
72
,…(7分)
同理可得:
P(ξ=4)=
5
24
,P(ξ=5)=
37
144
,P(ξ=6)=
13
72
,P(ξ=7)=
15
144
,P(ξ=8)=
1
24
,…(9分)
∴ξ的分布列為:
ξ 2 3 4 5 6 7 8
P
1
18
11
72
5
24
37
144
13
72
15
144
1
24
…(10分)
他平均一次得到的獎(jiǎng)勵(lì)分即為ξ的期望值:
Eξ=2×
1
18
+3×
11
72
+4×
5
24
+5×
37
144
+6×
13
72
+7×
15
144
+8×
1
24
=
29
6
,…(11分)
所以給他玩6次,平均可以得到6×Eξ=29分.               …(12分)
點(diǎn)評(píng):本題主要考查了概率知識(shí)解決實(shí)際問(wèn)題的能力,注意滿(mǎn)足獨(dú)立重復(fù)試驗(yàn)的條件,以及離散型隨機(jī)變量的數(shù)學(xué)期望和分布列,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•珠海二模)甲乙兩艘船都要在某個(gè)泊?,若分別停靠6小時(shí)、8小時(shí).假定它們?cè)谝粫円沟臅r(shí)間段內(nèi)任意時(shí)刻到達(dá),則這兩艘船中有一艘在?坎次粫r(shí)必須等待的概率為
143
288
143
288

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•珠海二模)方程x+y+z=12的正整數(shù)解的個(gè)數(shù)為
55
55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•珠海二模)(文)在△ABC中,A點(diǎn)的坐標(biāo)為(3,0),BC邊長(zhǎng)為2,且BC在y軸上的區(qū)間[-3,3]上滑動(dòng).
(1)求△ABC外心的軌跡方程;
(2)設(shè)直線(xiàn)l:y=3x+b與(1)的軌跡交于E,F(xiàn)兩點(diǎn),原點(diǎn)到直線(xiàn)l的距離為d,求
|EF|d
的最大值.并求出此時(shí)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案