17.已知f(x)在R上是奇函數(shù),且滿足f(x+5)=-f(x),當(dāng)x∈(0,5)時(shí),f(x)=x2-5x,則f(2016)=( 。
A.4B.-4C.-2D.0

分析 求出函數(shù)的周期,轉(zhuǎn)化所求函數(shù)的定義域?yàn)橐阎瘮?shù)的定義域范圍,求解即可.

解答 解:f(x)在R上是奇函數(shù),且滿足f(x+5)=-f(x),
可得:f(x+10)=-f(x+5)=f(x),
函數(shù)的周期為10.
當(dāng)x∈(0,5)時(shí),f(x)=x2-5x,則f(2016)=f(2010+6)=f(6)=-f(1)=-(1-5)=4.
故選:A.

點(diǎn)評 本題考查抽象函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若數(shù)列{an}對任意的正整數(shù)n和m等式an+m2=an×an+2m都成立,則稱數(shù)列{an}為m階梯等比數(shù)列,若{an}是3階梯等比數(shù)列有a1=1,a4=2,則a10=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定點(diǎn)A、B,且|AB|=10,動(dòng)點(diǎn)M滿足|MA|-|MB|=8,則|MA|的最小值為( 。
A.1B.4C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F1、F2為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2做橢圓的弦AB.
(Ⅰ) 求證:△F1AB的周長是常數(shù);
(Ⅱ) 若:△F1AB的周長為16,且|AF1|、|F1F2|、|AF2|成等差數(shù)列,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}ln(x+1),x>0\\-{x^2}+2x,x≤0\end{array}$,則不等式f(2x-1)>f(2-x)的解集為( 。
A.(-∞,0)B.(-1,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過拋物線y2=8x的焦點(diǎn)作傾斜角為45°的直線,交拋物線于A、B兩點(diǎn).求:
(1)被拋物線截得的弦長|AB|;
(2)線段AB的中點(diǎn)到直線x+2=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知M(2m+3,m)、N(m-2,1),則當(dāng)m∈{-5}時(shí),直線MN的傾斜角為直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二次函數(shù)f(x)=x2+mx+n(m,n∈R)的兩個(gè)零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n-2)2的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+$\frac{a}{x}$.
(1)判斷f(x)的奇偶性并說明理由;
(2)當(dāng)a=16時(shí),判斷f(x)在x∈(0,2]上的單調(diào)性并用定義證明;
(3)試判斷方程x3-2016x+16=0在區(qū)間(0,+∞)上解的個(gè)數(shù)并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案