精英家教網 > 高中數學 > 題目詳情

已知點A(3,0)B(3,0),動點P滿足|PA|2|PB|.

(1)若點P的軌跡為曲線C,求此曲線的方程;

(2)若點Q在直線l1xy30上,直線l2經過點Q且與曲線C只有一個公共點M,求|QM|的最小值.?

 

1(x5)2y21624

【解析】(1)設點P的坐標為(x,y),則2 化簡可得(x5)2y216,即為所求.

(2)曲線C是以點(5,0)為圓心,4為半徑的圓,如圖.

由直線l2是此圓的切線,連接CQ

|QM|,當CQl1時,|CQ|取最小值,|CQ|4,此時|QM|的最小值為4.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練9練習卷(解析版) 題型:選擇題

在等比數列{an}中,若a4,a8是方程x24x30的兩根,則a6的值是(  )

A. B.- D±3

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練17練習卷(解析版) 題型:選擇題

已知PABC所在平面內一點,20,現將一粒黃豆隨機撒在ABC內,則黃豆落在PBC內的概率是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:解答題

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是71.

(1)求橢圓C的方程;

(2)P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:選擇題

已知拋物線y24px(p0)與雙曲線1(a0,b0)有相同的焦點F,點A是兩曲線的交點,且AFx軸,則雙曲線的離心率為(  )

A. B. 1 C. 1 D.

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練14練習卷(解析版) 題型:選擇題

已知圓的方程為x2y26x8y0,設該圓中過點(3,5)的最長弦和最短弦分別為ACBD,則四邊形ABCD的面積是(  )

A10 B20 C30 D40

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題

已知正四棱錐P-ABCD的側棱與底面所成角為60°,MPA中點,連接DM,則DM與平面PAC所成角的大小是________

 

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:選擇題

已知α,βγ是三個不重合的平面,ab是兩條不重合的直線,有下列三個條件:aγb?β;aγbβ;bβ,a?γ.如果命題αβa,b?γ,且________,那么ab為真命題,則可以在橫線處填入的條件是(  )

A BC D.只有

 

查看答案和解析>>

科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PC底面ABCD,底面ABCD是直角梯形,ABADABCD,AB2AD2CD2EPB的中點.

(1)求證:平面EAC平面PBC;

(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.

 

查看答案和解析>>

同步練習冊答案