18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t為參數(shù)),直線l與兩個(gè)直角坐標(biāo)軸的交點(diǎn)分別是A,B.以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2sinθ,$θ∈(\frac{π}{4},\frac{3π}{4})$,半圓C的圓心是C.
(Ⅰ)求直線l的普通方程與半圓C的參數(shù)方程;
(Ⅱ)若點(diǎn)D在半圓C上,直線CD的傾斜角是2α,△ABD的面積是4,求D的直角坐標(biāo).

分析 (Ⅰ)消去參數(shù),可得直線l的普通方程,利用半圓C的直角坐標(biāo)方程是x2+(y-1)2=1(y>1),寫出半圓C的參數(shù)方程;
(Ⅱ)若點(diǎn)D在半圓C上,直線CD的傾斜角是2α,△ABD的面積是4,求出α,即可求D的直角坐標(biāo).

解答 解:(Ⅰ)直線l的普通方程是y=xtanα-2.
半圓C的直角坐標(biāo)方程是x2+(y-1)2=1(y>1).
它的參數(shù)方程是$\left\{\begin{array}{l}x=cosφ\(chéng)\ y=1+sinφ\(chéng)end{array}\right.$,其中φ是參數(shù),且φ∈(0,π).…(5分)
(Ⅱ)由(Ⅰ)可設(shè)D(cos2α,1+sin2α),其中α$∈(0,\frac{π}{2})$.
再由(Ⅰ)可知$|AB|=\frac{2}{sinα}$.
D到直線l距離是$\frac{|cos2α•tanα-(1+sin2α)-2|}{{\sqrt{{{tan}^2}α+1}}}=3cosα+sinα$.
因?yàn)椤鰽BD的面積是4,所以$\frac{1}{2}•\frac{2}{sinα}•(3cosα+sinα)=4$,得tanα=1,$α=\frac{π}{4}$,
故D的直角坐標(biāo)是D(0,2).…(10分)

點(diǎn)評(píng) 本題考查參數(shù)方程、極坐標(biāo)方程,直角坐標(biāo)方程的互化,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列四組函數(shù)中,表示同一函數(shù)的是(  )
A.f(x)=|x|和g(x)=$\sqrt{{x}^{2}}$B.f(x)=$\sqrt{{x}^{2}}$和 g(x)=($\sqrt{x}$)2
C.f(x)=$\frac{{x}^{2}-1}{x-1}$和g(x)=x+1D.f(x)=x-1與g(x)=$\frac{{x}^{2}}{x}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示[1 000,1 500))

(1)求居民收入在[3 000,3 500)的頻率;
(2)根據(jù)頻率分布直方圖估算出樣本數(shù)據(jù)的平均數(shù),眾數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=sin2x+a(1+cosx)-2x在x=$\frac{5π}{6}$處取得極值.
(1)若f(x)的導(dǎo)函數(shù)為f'(x),求f'(x)的最值;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)是定義在[-1,1]上的增函數(shù),若f(x-1)<f(x2-1),則x范圍是(  )
A.(1,+∞)∪(-∞,0)B.(0,1)C.$({1,\sqrt{2}}]$D.$({1,\sqrt{2}}]∪[{-\sqrt{2},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=0,S5=2a4-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知集合A={x|ax2-2x+1=0}至多有兩個(gè)子集,則a的取值范圍a≥1或a≤-1或a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)兩焦點(diǎn)坐標(biāo)為(0,-5),(0,5),且a=4;
(2)兩焦點(diǎn)坐標(biāo)為(0,-6),(0,6),且經(jīng)過(guò)點(diǎn)(2,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=sinxcosx-$\sqrt{3}{cos^2}$x,則函數(shù)f(x)圖象的一條對(duì)稱軸是(  )
A.$x=\frac{5π}{12}$B.$x=\frac{π}{3}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

查看答案和解析>>

同步練習(xí)冊(cè)答案