設(shè)函數(shù).
(1)證明:是奇函數(shù);
(2)求的單調(diào)區(qū)間;
(3)寫出函數(shù)圖象的一個(gè)對(duì)稱中心.

(1)  (2) 單調(diào)增區(qū)間有;  (3) 。

解析試題分析:(1)易知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/b/1nuu13.png" style="vertical-align:middle;" />,,所以是奇函數(shù)!4分
(2)令也為單調(diào)遞增函數(shù),所以函數(shù)單調(diào)增區(qū)間有!6分 
(3)       4分
考點(diǎn):函數(shù)的奇偶性;函數(shù)的單調(diào)性;函數(shù)的對(duì)稱性。
點(diǎn)評(píng):(1)本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用。屬于基礎(chǔ)題型。(2)判斷函數(shù)的奇偶性有兩步:一求函數(shù)的定義域,看定義域是否關(guān)于原點(diǎn)對(duì)稱;二判斷的關(guān)系。若定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)一定是非奇非偶函數(shù)。(3)復(fù)合函數(shù)的單調(diào)性的判斷只需用四個(gè)字:同增異減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知對(duì)于任意實(shí)數(shù)滿足,當(dāng)時(shí),.
(1)求并判斷的奇偶性;
(2)判斷的單調(diào)性,并用定義加以證明;
(3)已知,集合,
集合,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分8分)
某商店經(jīng)營(yíng)的消費(fèi)品進(jìn)價(jià)每件14元,月銷售量(百件)與銷售價(jià)格(元)的關(guān)系如下圖,每月各種開支2000元.

(1)寫出月銷售量(百件)與銷售價(jià)格(元)的函數(shù)關(guān)系;
(2)寫出月利潤(rùn)(元)與銷售價(jià)格(元)的函數(shù)關(guān)系;
(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤(rùn)最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù),,其中,設(shè)
(1)判斷的奇偶性,并說明理由;
(2)若,求使成立的x的集合。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)對(duì)定義域分別是的函數(shù)、,
規(guī)定:函數(shù)
已知函數(shù),
(1)求函數(shù)的解析式;
⑵對(duì)于實(shí)數(shù),函數(shù)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分) 已知是方程的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/b/1vwmh2.png" style="vertical-align:middle;" />.
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設(shè)函數(shù),
若對(duì)任意的,總存在,使得成立,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)

(1)作出函數(shù)的圖象;
(2)寫出函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)的奇偶性,并用定義證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案