已知函數(shù)f(x)=2x+λ2-x(λ∈R).
(1)當(dāng)λ=-1時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)為偶函數(shù),求實(shí)數(shù)λ的值;
(3)若不等式
1
2
≤f(x)≤4在x∈[0,1]上恒成立,求實(shí)數(shù)λ的取值范圍.
考點(diǎn):函數(shù)零點(diǎn)的判定定理,函數(shù)奇偶性的性質(zhì),函數(shù)恒成立問(wèn)題
專題:計(jì)算題
分析:(1)根據(jù)函數(shù)零點(diǎn)的定義,直接解方程即可,
(2)根據(jù)偶函數(shù)的定義判斷即可,
(3)不等式轉(zhuǎn)化為參數(shù)λ的不等式,-22x+2x-1≤λ≤-22x+2x+2,求在區(qū)間的最值問(wèn)題,問(wèn)題得以解決.
解答: 解:(1)∵f(x)=2x+λ2-x,當(dāng)λ=-1時(shí),∴2x-2-x=0,解得,x=0;
(2)∵函數(shù)f(x)為偶函數(shù),∴f(-x)=f(x),∴λ2x+2-x=2x+λ2-x,解得λ=1
(3)∵
1
2
≤f(x)≤4
1
2
≤2x+λ2-x≤4
∴-22x+2x-1≤λ≤-22x+2x+2
設(shè)2x=t,t∈[1,2],
∴-t2+
1
2
t≤λ≤-t2+4t,
分別令g(t)=-t2+
1
2
t,h(t)=-t2+4t,
∴g(t)max=g(1)=-
1
2
,h(t)min=h(1)=3
-
1
2
≤λ≤3
點(diǎn)評(píng):本題考查函數(shù)零點(diǎn)的求法,偶函數(shù)的判斷,指數(shù)型復(fù)合函數(shù)的性質(zhì)以及應(yīng)用,函數(shù)的恒成立問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正數(shù)x,y,定義運(yùn)算Φ(x,y)=x-
1
y
,則Φ(2,Φ(2,2))的值為(  )
A、
2
3
B、1
C、
4
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(2)=3,且f′(x)<1,則不等式f(x2)<x2+1的解集是( 。
A、(-∞,-
2
B、(
2
,+∞)
C、(-
2
,
2
D、(-∞,-
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A,B,C的對(duì)邊分別為a,b,c,且
AB
2=
AB
AC
+
BA
BC
+
CA
CB

(1)判斷△ABC的形狀,并求sinA+sinB的取值范圍.
(2)如圖,三角形ABC的頂點(diǎn)A、C分別在l1、l2上運(yùn)動(dòng),AC=2,BC=1,若直線l1⊥直線l2 ,且相交于點(diǎn)O,求O,B間距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘船從A點(diǎn)出發(fā)以2
3
km/h的速度向垂直于對(duì)岸的方向行駛,同時(shí)河水的流速為2km/h,求船實(shí)際航行速度的大小與方向(用與流速間的夾角表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-2,求4sin2α+3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a-b≠0時(shí),有
f(a)-f(b)
a-b
>0成立.
(1)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l經(jīng)過(guò)兩點(diǎn)(1,-2),(3,2),設(shè)圓C的半徑為1,圓心在直線l上.
(Ⅰ)求直線l的方程;
(Ⅱ)若圓C被x軸截得的弦長(zhǎng)為
3
,求圓C的方程;
(Ⅲ)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校舉行中學(xué)生“日常生活小常識(shí)”知識(shí)比賽,比賽分為初賽和復(fù)賽兩部分,初賽采用選手從備選題中選一題答一題的方式進(jìn)行;每位選手最多有5次答題機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止比賽,答對(duì)3題者直接進(jìn)入復(fù)賽,答錯(cuò)3題者則被淘汰.已知選手甲答對(duì)每個(gè)題的概率均為
2
3
,且相互間沒(méi)有影響.
(Ⅰ)求選手甲進(jìn)入復(fù)賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個(gè)數(shù)為X,試求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案