已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:設(shè)|MA|=x,則可求得|OM|,|AO|的值,進而利用余弦定理得到cos∠OMA的表達式,利用均值不等式求得cos∠OMA的最小值,進而求得∠OMA的最大值.
解答:設(shè)|MA|=x,則|OM|=2,|AO|=2
由余弦定理可知cos∠OMA==•(+x)≥(當(dāng)且僅當(dāng)x=2時等號成立)
∴∠OMA≤
故選B.
點評:本題主要考查了點與圓的位置關(guān)系,余弦定理的應(yīng)用,均值不等式求最值.考查了學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點A(-2,0),動點B是圓F:(x-2)2+y2=64(F為圓心)上一點,線段AB的垂直平分線交BF于P;
(1)求動點P的軌跡E的方程;
(2)直線y=
3
x+1與曲線E交于M,N兩點,試問在曲線E位于第二象限部分上是否存在一點C,使
OM
+
ON
OC
共線(O為坐標(biāo)原點)?若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知定點A(2,0),點Q是圓x2+y2=1上的動點,∠AOQ的平分線交AQ于M,當(dāng)Q點在圓上移動時,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知定點A(2,0)及拋物線y2=x,點B在該拋物線上,若動點P使得
AP
+2
BP
=
0
,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石家莊一模)在平面直角坐標(biāo)系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為-
1
4
,設(shè)動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II )過定點T(-1,0)的動直線l與曲線C交于P,Q兩點,是否存在定點S(s,0),使得
SP
SQ
為定值,若存在求出s的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石家莊一模)在平面直角坐標(biāo)系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為-
1
4
,設(shè)動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II)過定點T(-1,0)的動直線l與曲線C交于P,Q兩點,若S(-
17
8
,0),證明:
SP
SQ
為定值.

查看答案和解析>>

同步練習(xí)冊答案