在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,a=3,cos
A+C
2
=
3
3
,且△ABC面積是2
2
,
(1)求cosB的值;
(2)求b,c.
考點(diǎn):正弦定理,余弦定理
專題:三角函數(shù)的求值
分析:(1)已知等式利用誘導(dǎo)公式化簡(jiǎn),再利用二倍角的余弦函數(shù)公式計(jì)算即可求出cosB的值;
(2)利用三角形面積公式表示出三角形ABC面積,將已知面積及sinB的值代入求出ac的值,將a的值代入求出c的值,再利用余弦定理即可求出b的值.
解答: 解:(1)∵A+B+C=π,
∴cos
A+C
2
=sin
B
2
=
3
3
,
∴cosB=1-2sin2
B
2
=
1
3

(2)∵cosB=
1
3
,
∴sinB=
1-cos2B
=
2
2
3
,
∵S=
1
2
acsinB=2
2
,a=3,sinB=
2
2
3
,
∴c=2,
由余弦定理得:b2=a2+c2-2accosB=9+4-4=9,
則b=3.
點(diǎn)評(píng):此題考查了余弦定理,三角形面積公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
2+i
1-2i
(i為虛數(shù)單位)的虛部是(  )
A、iB、1C、-1D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
bx2-(b+a)x.
(Ⅰ)當(dāng)a=1,b=0時(shí),求f(x)的最大值;
(Ⅱ)當(dāng)b=1時(shí),設(shè)α,β是f(x)兩個(gè)極值點(diǎn),且α<β,β∈(1,e](其中e為自然對(duì)數(shù)的底數(shù)).求證:對(duì)任意的x1,x2∈[α,β],|f(x1)-f(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,sinx-cosx),
b
=(cosx,
3
(cosx+sinx)),函數(shù)f(x)=
a
b
+1
(1)當(dāng)x∈(
π
4
,
π
2
)時(shí),求f(x)的值域;并求其對(duì)稱中心.
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若將f(x)向左平移
π
4
個(gè)單位,且b=5,f(
B
2
)=3,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},a1=1,an+1=
an
3
+
1
3n
.?dāng)?shù)列{bn},bn=3n-1an.正數(shù)數(shù)列{dn},dn2=1+
1
bn2
+
1
bn+12

(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)數(shù)列{bn},{dn}的前n項(xiàng)和分別為Bn,Dn,求數(shù)列{bnDn+dnBn-bndn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,點(diǎn)E,F(xiàn)在圓上,四邊形ABCD為矩形,AB∥EF,∠BAF=
π
3
,M為BD的中點(diǎn),平面ABCD⊥平面ABEF.求證:
(1)BF⊥平面DAF;
(2)ME∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小區(qū)想利用一矩形空地ABCD建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,經(jīng)測(cè)量得到AE=10m,EF=20m.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過點(diǎn)G作一直線交AB,DF于M,N,從而得到五邊形MBCDN的市民健身廣場(chǎng),設(shè)DN=x(m)
(1)將五邊形MBCDN的面積y表示為x的函數(shù);
(2)當(dāng)x為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1(側(cè)棱與底面垂直的三棱柱為直三棱柱)中,CA=CB,D,D1,E分別為邊AB,A1B1,BC1的中點(diǎn).
(1)求證:平面ABC1⊥平面DCC1D1;
(2)若D1在平面ABC1的射影F在邊AE上,且
AA 1
AB
=
1
2
,求直線AD1與平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊a,b,c滿足1≤c≤3≤b≤4≤a≤9,則△ABC的面積S最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案