9.已知$f(x)=-\frac{1}{2}{x^2}+6x-8lnx$在[m,m+1]上不單調(diào),則實(shí)數(shù)m的取值范圍是( 。
A.(1,2)B.(3,4)C.(1,2]∪[3,4)D.(1,2)∪(3,4)

分析 求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),利用函數(shù)的單調(diào)性列出不等式求解即可.

解答 解:$f(x)=-\frac{1}{2}{x^2}+6x-8lnx$,可得f′(x)=-x+6-$\frac{8}{x}$=-$\frac{(x-2)(x-4)}{x}$,函數(shù)的極值點(diǎn)為:x=2,x=4,
$f(x)=-\frac{1}{2}{x^2}+6x-8lnx$在[m,m+1]上不單調(diào),
可得m<2<m+1或m<4<m+1,
解得m∈(1,2)∪(3,4).
故選:D.

點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值點(diǎn)以及函數(shù)的單調(diào)性的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.三角形三個頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求BC邊所在的直線的方程;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,輸出S的值為( 。
A.-$\frac{31}{15}$B.-$\frac{7}{5}$C.-$\frac{31}{17}$D.-$\frac{21}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$z=\frac{2+i}{i^5}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從1,3,5,7,9中任取3個數(shù)字,從2,4,6,8中任取2個數(shù)字,組成沒有重復(fù)數(shù)字的五位數(shù),則組成的五位數(shù)是偶數(shù)的概率是( 。
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列指數(shù)式與對數(shù)式互化不正確的一組是( 。
A.e0=1與ln 1=0B.log39=2與9${\;}^{\frac{1}{2}}$=3
C.8${\;}^{-\frac{1}{3}}$=$\frac{1}{2}$與log8$\frac{1}{2}$=-$\frac{1}{3}$D.log77=1與71=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,PA切圓于A,PA=8,直線PCB交圓于C,B,連接AB,AC,且PC=4,AD⊥BC于D,∠ABC=α,∠ACB=β,則$\frac{sinα}{sinβ}$的值等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某校高三文科學(xué)生參加了9月的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、外語成績,抽出100名學(xué)生的數(shù)學(xué)、外語成績統(tǒng)計,其結(jié)果如表:
外語

數(shù)學(xué)
優(yōu)及格
優(yōu)8m9
9n11
及格8911
(1)若數(shù)學(xué)成績優(yōu)秀率為35%,求m,n的值;
(2)在外語成績?yōu)榱嫉膶W(xué)生中,已知m≥12,n≥10,求數(shù)學(xué)成績優(yōu)比良的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線a,b和平面α,若a∥b,且直線b在平面α上,則a與α的位置關(guān)系是a∥α或a?α.

查看答案和解析>>

同步練習(xí)冊答案