4.已知集合M={-1,0,1,2},N={x|log2x<1},則M∩N=( 。
A.{1}B.{-1,0}C.{0,1}D.{-1,0,1}

分析 求出集合的等價條件,根據(jù)集合的交集定義進(jìn)行求解即可.

解答 解:N={x|log2x<1}={x|0<x<2},
則M∩N={1},
故選:A.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}的前n項和為Sn=ln(1+$\frac{1}{n}$),則e${\;}^{{a}_{7}+{a}_{8}+{a}_{9}}$=( 。
A.$\frac{3}{4}$B.$\frac{20}{21}$C.$\frac{26}{27}$D.$\frac{35}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sin (3x+$\frac{π}{4}$)的圖象可由函數(shù)y=sin 3x的圖象(  )
A.向左平移$\frac{π}{12}$個單位長度而得到B.向右平移$\frac{π}{12}$個單位長度而得到
C.向左平移$\frac{π}{4}$個單位長度而得到D.向右平移$\frac{π}{4}$個單位長度而得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短軸的兩個頂點與右焦點的連線構(gòu)成等邊三角形,直線3x+4y+6=0與圓x2+(y-b)2=a2相切.
(1)求橢圓C的方程;
(2)已知過橢圓C的左頂點A的兩條直線l1,l2分別交橢圓C于M,N兩點,且l1⊥l2,求證:直線MN過定點,并求出定點坐標(biāo);
(3)在(2)的條件下求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知半徑為2的圓C,圓心在x軸正半軸上,且與直線x-$\sqrt{3}$y+2=0相切.
(1)求圓C的方程;
(2)在圓C上,是否存在點P,滿足|PQ|=$\frac{{\sqrt{2}}}{2}$|PO|,其中,點Q的坐標(biāo)是Q(-1,0).若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)若在圓C上存在點M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交不同兩點A,B,求m的取值范圍.并求出使得△OAB的面積最大的點M的坐標(biāo)及對應(yīng)的△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=$\frac{\sqrt{2}}{2}$,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A-BEF的體積為定值;
(4)異面直線AE,BF所成的角為定值.
其中錯誤的結(jié)論有(  )
A.0個B.1 個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.四個小動物換座位,開始是鼠、猴、兔、貓分別坐1、2、3、4號位上(如圖),第一次前后排互換座位,第二次左右動物互換座位,…這樣交替進(jìn)行下去,那么202次互換座位后,小猴坐在第4號座位上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-3y≥-2\\ 3x-3y≤4\\ x+y≥1\end{array}\right.$,若x2+9y2≥a恒成立,則實數(shù)a的最大值為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(0,2$\sqrt{3}$),$\overrightarrow$=(1,$\sqrt{3}$).$\overrightarrow{e}$是與$\overrightarrow$同向的單位向量,則$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影為(  )
A.-3B.$\sqrt{3}$C.-$\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊答案