用數(shù)字0,1,2,3,4,5,6組成沒有重復數(shù)字的四位數(shù),其中個位、十位和百位上的數(shù)字之和為偶數(shù)的四位數(shù)共有
 
個(用數(shù)字作答).
考點:計數(shù)原理的應用
專題:排列組合
分析:由題意知本題需要分類來解,當個位、十位和百位上的數(shù)字為3個偶數(shù),當個位、十位和百位上的數(shù)字為1個偶數(shù)2個奇數(shù),根據(jù)分類計數(shù)原理得到結果.
解答: 解:個位、十位和百位上的數(shù)字為3個偶數(shù)的有:
C
2
3
A
3
3
•C
2
4
+
A
3
3
C
1
3
=90種;
個位、十位和百位上的數(shù)字為1個偶數(shù)2個奇數(shù)的有:
C
2
3
A
3
3
•C
2
4
+
C
1
3
C
2
3
A
3
3
C
2
3
=234種,
根據(jù)分類計數(shù)原理得到,共有90+234=324個.
故答案為:324.
點評:本小題考查排列實際問題基礎題.數(shù)字問題是計數(shù)中的一大類問題,條件變換多樣,把計數(shù)問題包含在數(shù)字問題中,解題的關鍵是看清題目的實質,很多題目要分類討論,要做到不重不漏.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1
x
與x=1,y軸和x=e所圍成的圖形的面積為M,N=
tan22.5°
1-tan222.5°
,則程序框圖輸出的S為( 。
A、1
B、2
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求解析式:
(1)已知f(x)為二次函數(shù),且f(2x+1)+f(2x-1)=16x2-4x+6,求f(x).
(2)已知f(
x
+1)=x+2
x
,求f(x).
(3)如果函數(shù)f(x)滿足方程f(x)+2f(-x)=x,x∈R,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,△ABC為正三角形,∠PCA=90°,D為PA中點,二面角P-AC-B的大小為為120°,PC=2,AB=2
3

(1)求證:AC⊥BD;
(2)求BD與底面ABC所成的角,
(3)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,求證:
(1)B1D1∥平面BC1D;   
(2)A1C⊥B1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐A-BCD各棱長都為1,且M、N分別是AB、CD的中點,
(1)求MN和BD所成角;
(2)求該三棱錐體積與它的內(nèi)切球體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}前n項和為Sn,首項為a1,且1,an,Sn成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列滿足bn=(log2an+1)(log2an+2),求證:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,不等式組
x+y-2≥0
x-y+2≥0
x≤2
表示的平面區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),若存在x0∈R,使f(x0)=x0,則稱x0是函數(shù)y=f(x)的一個不動點.設二次函數(shù)f(x)=ax2+(b+1)x+(b-1).
(Ⅰ)對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若y=f(x)的圖象上A,B兩點的橫坐標是f(x)的不動點,且A,B兩點關于直線y=kx+
1
2a2+1
對稱,求b的最小值.

查看答案和解析>>

同步練習冊答案