【題目】已知圓,圓內(nèi)一定點(diǎn),動(dòng)圓過點(diǎn)且與圓內(nèi)切.記動(dòng)圓圓心的軌跡為.

(Ⅰ)求軌跡方程;

(II)過點(diǎn)的動(dòng)直線l交軌跡M,N兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以線段MN為直徑的圓恒過點(diǎn)Q?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(I) ;(II)存在,恒過點(diǎn)Q(0,1).

【解析】

(Ⅰ)由題意可知:,P點(diǎn)軌跡是以A、B為焦點(diǎn)的橢圓,即可求得橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)利用特例先確定定點(diǎn)Q,再推廣到一般情況即可.

解:(Ⅰ)解:設(shè)動(dòng)圓圓心,半徑為.

,

故點(diǎn)的軌跡為橢圓,

,

,

故圓心的軌跡方程為

(II)當(dāng)lx軸平行時(shí),以線段MN為直徑的圓的方程為x2

當(dāng)ly軸平行時(shí),以線段MN為直徑的圓的方程為x2y2=1.

故若存在定點(diǎn)Q,則Q的坐標(biāo)只可能為Q(0,1).

下面證明Q(0,1)為所求:

若直線l的斜率不存在,上述已經(jīng)證明.

若直線l的斜率存在,設(shè)直線lykx,

M(x1,y1),N(x2,y2),

得(9+18k2)x2-12kx-16=0,

Δ=144k2+64(9+18k2)>0,

x1x2,x1x2,

=(x1,y1-1),=(x2y2-1),

x1x2+(y1-1)(y2-1)

=(1+k2)x1x2(x1x2)+

=(1+k2·=0,

,即以線段MN為直徑的圓恒過點(diǎn)Q(0,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點(diǎn)是橢圓的頂點(diǎn).

(1)求的標(biāo)準(zhǔn)方程;

(2)上不同于的兩點(diǎn), 滿足,且直線相切,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)程為為參數(shù)),設(shè)直線的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.

(1)求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題:實(shí)數(shù)滿足 (其中),命題:實(shí)數(shù)滿足

(1)若,且為真命題,求實(shí)數(shù)的取值范圍.

(2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(Ⅰ)估計(jì)該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的條件下,有關(guān)部門為此次參加問卷調(diào)査的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于μ可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于μ則只有1次;

(ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:

贈(zèng)送話費(fèi)(單元:元)

10

20

概率

現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位元)為該市民參加.問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列和數(shù)學(xué)期望.

,

若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩人約定在20∶00到21∶00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨(dú)立的,在20∶00至21∶00各時(shí)刻相見的可能性是相等的,則他們兩人在約定時(shí)間內(nèi)相見的概率為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,.

1)若,,求的取值范圍;

2)若是公比為的等比數(shù)列,,,求的取值范圍;

3)若成等差數(shù)列,且,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

)求的取值范圍.

)記兩個(gè)極值點(diǎn), ,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C,點(diǎn)x軸的正半軸上,過點(diǎn)M的直線l與拋線C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).

,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;

是否存在定點(diǎn)M,使得不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),恒為定值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案