已知圓x2+y2+2x-2y+1=0與圓x2+y2-4x+4y+7=0關(guān)于直線l對稱,則直線l方程的一般式為
 
考點:圓與圓的位置關(guān)系及其判定
專題:計算題,直線與圓
分析:把兩個圓的方程相減可得對稱軸l的方程.
解答: 解:把兩個圓的方程相減可得6x-6y-6=0,即x-y-1=0,
故答案為:x-y-1=0.
點評:本題考查兩圓關(guān)于直線對稱的性質(zhì),當(dāng)兩圓關(guān)于某直線對稱時,把兩個圓的方程相減可得此直線的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①“如果x+y=0,則x、y互為相反數(shù)”的逆命題;
②“函數(shù)f(x)=tan(x+φ)為奇函數(shù)”的充要條件是“φ=kπ(k∈Z)”;
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要條件;
④“如果x2+x-6≥0,則x>2”的否命題,
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,
m
=(sin(x-A),sinA),
n
=(2cosx,1)(x∈R),函數(shù)f(x)=
m
n
在x=
12
處取得最大值.
(1)當(dāng)x∈(0,
π
2
)時,求函數(shù)f(x)的值域;
(2)若a=7且sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“A=
π
3
”是“cosA=
1
2
”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面六面體ABCD-A1B1C1D1中,若
AB
=
m
,
AD
=
n
,
AA1
=
t
,E,F(xiàn)分別為BB1和AD的中點,若
EF
=u
m
+v
n
t
,求u,v,μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:ax+y+1=0平分圓x2+y2-2x+6y+5=0的面積,則直線l的傾斜角為
 
.(用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為4,其圖象相鄰兩條對稱軸之間的距離為
π
2

(1)求f(x)的解析式;   
(2)設(shè)θ∈(0,
π
2
),f(
θ
2
)=
5
2
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,已知E、F分別是AB、BC的中點,求證:EF∥A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過原點且與曲線y=
x+9
x+5
相切的切線方程是
 

查看答案和解析>>

同步練習(xí)冊答案