【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點后7位的結(jié)果,他是世界上第一個把圓周率的數(shù)值計算到小數(shù)點后第7位的人,這比歐洲早了約1000年.生活中,我們也可以通過如下隨機模擬試驗來估計的值:在區(qū)間內(nèi)隨機取個數(shù),構(gòu)成個數(shù)對,設(shè),能與1構(gòu)成鈍角三角形三邊的數(shù)對有對,則通過隨機模擬的方法得到的的近似值為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(1﹣sinx)ex.
(1)求f(x)在區(qū)間(0,π)的極值;
(2)證明:函數(shù)g(x)=f(x)﹣sinx﹣1在區(qū)間(﹣π,π)有且只有3個零點,且之和為0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點,若直線與曲線交于不同的兩點,當(dāng)最大時,求出直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若方程有三個解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點在橢圓上,且橢圓的離心率為.
(1)求橢圓的標(biāo)準方程;
(2)記橢圓的左、右頂點分別為,過點或作一條直線交橢圓于、(不與重合)兩點,直線交于點,記直線的斜率分別為.
①對于給定的,求的值;
②是否存在一個定值使得恒成立,若存在,求出值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com