某單位舉行新年猜謎獲獎(jiǎng)活動(dòng),每位參與者需要先后回答兩道選擇題:?jiǎn)栴}A有四個(gè)選項(xiàng),問(wèn)題B有六個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的.正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元.活動(dòng)規(guī)定:①參與者可任意選擇回答問(wèn)題的順序;②如果第一個(gè)問(wèn)題回答錯(cuò)誤,則該參與者猜獎(jiǎng)活動(dòng)中止.
(1)若a=100,b=200時(shí),某人決定先回答問(wèn)題B,則他獲得獎(jiǎng)金的期望值為多少;
(2)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,因而準(zhǔn)備靠隨機(jī)猜測(cè)回答問(wèn)題.試確定回答問(wèn)題的順序使獲獎(jiǎng)金額的期望值較大.
分析:先根據(jù)題意得出:隨機(jī)猜對(duì)問(wèn)題A的概率P1=
1
4
,隨機(jī)猜對(duì)問(wèn)題B的概率P2=
1
6

(1)若先回答問(wèn)題B,則參與者獲獎(jiǎng)金額η可取0,200,300,由η的分布列算出期望值:Eη=0×
5
6
+200×
1
8
+300×
1
24
=
75
2
元;
(2)回答問(wèn)題的順序有兩種,分別討論如下:
若先回答問(wèn)題A,再回答問(wèn)題B.參與者獲獎(jiǎng)金額ξ可取0,a,a+b,由ξ的分布列算出期望值Eξ=0×
1
4
+a×
5
24
+(a+b)×
1
24
=
6a+b
24
元,若先回答問(wèn)題B,再回答問(wèn)題A.參與者獲獎(jiǎng)金額η可取0,b,a+b,由η的分布列算出期望值Eη=0×
5
6
+b×
1
8
+(a+b)×
1
24
=
a+4b
24
元(7分)Eξ-Eη=
6a+b
24
-
a+4b
24
=
5a-3b
24
,最后比較Eξ>Eη的大小即可得出結(jié)果
解答:解:隨機(jī)猜對(duì)問(wèn)題A的概率P1=
1
4
,隨機(jī)猜對(duì)問(wèn)題B的概率P2=
1
6
(1)若先回答問(wèn)題B,則參與者獲獎(jiǎng)金額η可取0,200,300,則P(η=0)=1-P2=
5
6
,P(η=200)=P2(1-P1)=
1
8
,P(η=300)=P1P2=
1
24
Eη=0×
5
6
+200×
1
8
+300×
1
24
=
75
2
元(3分)
(2)回答問(wèn)題的順序有兩種,分別討論如下:
若先回答問(wèn)題A,再回答問(wèn)題B.參與者獲獎(jiǎng)金額ξ可取0,a,a+b,則P(ξ=0)=1-P1=
3
4
,P(ξ=a)=P1(1-P2)=
5
24
P(ξ=a+b)=P1P2=
1
24
Eξ=0×
1
4
+a×
5
24
+(a+b)×
1
24
=
6a+b
24
元(5分)
若先回答問(wèn)題B,再回答問(wèn)題A.參與者獲獎(jiǎng)金額η可取0,b,a+b,則P(η=0)=1-P2=
5
6
,P(η=a)=P2(1-P1)=
1
8
,P(η=a+b)=P1P2=
1
24
Eη=0×
5
6
+b×
1
8
+(a+b)×
1
24
=
a+4b
24
元(7分)Eξ-Eη=
6a+b
24
-
a+4b
24
=
5a-3b
24
∴當(dāng)
a
b
3
5
時(shí),Eξ>Eη,先回答問(wèn)題A,再回答問(wèn)題B,獲獎(jiǎng)的期望值較大;
當(dāng)
a
b
=
3
5
時(shí),Eξ=Eη,兩種順序獲獎(jiǎng)的期望值相等;
當(dāng)
a
b
3
5
時(shí),Eξ<Eη,先回答問(wèn)題B,再回答問(wèn)題A,獲獎(jiǎng)的期望值較大.(10分)
點(diǎn)評(píng):期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊.同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某單位舉行新年猜謎獲獎(jiǎng)活動(dòng),每位參與者需要先后回答兩道選擇題:?jiǎn)栴}A有四個(gè)選項(xiàng),問(wèn)題B有六個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的.正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元.活動(dòng)規(guī)定:①參與者可任意選擇回答問(wèn)題的順序;②如果第一個(gè)問(wèn)題回答錯(cuò)誤,則該參與者猜獎(jiǎng)活動(dòng)中止.
(1)若a=100,b=200時(shí),某人決定先回答問(wèn)題B,則他獲得獎(jiǎng)金的期望值為多少;
(2)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,因而準(zhǔn)備靠隨機(jī)猜測(cè)回答問(wèn)題.試確定回答問(wèn)題的順序使獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省揚(yáng)州市高郵中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

某單位舉行新年猜謎獲獎(jiǎng)活動(dòng),每位參與者需要先后回答兩道選擇題:?jiǎn)栴}A有四個(gè)選項(xiàng),問(wèn)題B有六個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的.正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元.活動(dòng)規(guī)定:①參與者可任意選擇回答問(wèn)題的順序;②如果第一個(gè)問(wèn)題回答錯(cuò)誤,則該參與者猜獎(jiǎng)活動(dòng)中止.
(1)若a=100,b=200時(shí),某人決定先回答問(wèn)題B,則他獲得獎(jiǎng)金的期望值為多少;
(2)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,因而準(zhǔn)備靠隨機(jī)猜測(cè)回答問(wèn)題.試確定回答問(wèn)題的順序使獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

同步練習(xí)冊(cè)答案