給出下列命題:
①梯形的四個(gè)頂點(diǎn)共面;
②三條平行直線共面;
③有三個(gè)公共點(diǎn)的兩個(gè)平面重合;
④每?jī)蓷l都相交并且交點(diǎn)全部不同的四條直線共面,
其中正確命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間位置關(guān)系與距離
分析:根據(jù)梯形的兩底平行,結(jié)合公理2,可判斷①;根據(jù)三棱柱的三條側(cè)棱的位置關(guān)系,可判斷②;根據(jù)公理3,可判斷③;根據(jù)公理2,可判斷④
解答: 解:∵梯形的兩底平行,根據(jù)兩平行線確定一個(gè)平面知,①正確;
三棱柱的三條側(cè)棱相互平行,但不共面,②錯(cuò)誤;
有三個(gè)共線公共點(diǎn)的兩個(gè)平面可以相交,③錯(cuò)誤;
每?jī)蓷l都相交并且交點(diǎn)全部不同的四條直線共面,④正確;
故選:B
點(diǎn)評(píng):本題以命題的真假判斷為載體考查了平面的基本性質(zhì),難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+x,函數(shù)F(x)=f(-x)+f(x)-2x.
(1)求函數(shù)F(x)的零點(diǎn);
(2)設(shè)F(x)的兩個(gè)零點(diǎn)為α、β,且α<β,集合C={x|α≤x≤β},若方程f(ax)-ax+1=5(a>1)在集合C上有解,求實(shí)數(shù)a的取值范圍;
(3)記函數(shù)f(x)在C上的值域?yàn)锳,若函數(shù)g(x)=x2-tx+
t
2
,x∈[0,1]的值域?yàn)锽,且A⊆B,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD相鄰兩頂點(diǎn)A(-1,3)、B(-2,4),若矩形對(duì)角線交點(diǎn)在x軸上,求另兩個(gè)頂點(diǎn)C和D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一輛車(chē)要通過(guò)某十字路口,直行時(shí)前方剛好由綠燈轉(zhuǎn)為紅燈.該車(chē)前面已有4輛車(chē)依次在同一車(chē)道上排隊(duì)等候(該車(chē)道只可以直行或左轉(zhuǎn)行駛).已知每輛車(chē)直行的概率為
2
3
,左轉(zhuǎn)行駛的概率
1
3
.該路口紅綠燈轉(zhuǎn)換隔均為1分鐘.假設(shè)該車(chē)道上一輛直行的車(chē)駛出停車(chē)線需要10秒,一輛左轉(zhuǎn)行駛的車(chē)駛出停車(chē)線需要20秒.求:
(1)前面4輛車(chē)恰有2輛左轉(zhuǎn)行駛的概率為多少?
(2)該車(chē)在第一次綠燈亮起的1分鐘內(nèi)能通過(guò)該十字路口的概率(汽車(chē)駛出停車(chē)線就算通過(guò)路口);
(3)假設(shè)每次由紅燈轉(zhuǎn)為綠燈的瞬間,所有排隊(duì)等候的車(chē)輛都同時(shí)向前行駛,求該車(chē)在這十字路口停車(chē)等候的時(shí)間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件A:“取出的2件產(chǎn)品都是二等品”的概率P(A)=0.04
(1)求從該批產(chǎn)品中任取1件是二等品的概率p;
(2)若該批產(chǎn)品共10件,從中任意抽取2件,ξ表示取出的2件產(chǎn)品中二等品的件數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A和B兩種產(chǎn)品,已知制造產(chǎn)品A1kg,要用煤9t,電力4kw,勞動(dòng)力3個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值7萬(wàn)元;制造產(chǎn)品B1kg,要用煤4t,電力5kw,勞動(dòng)力10個(gè),能創(chuàng)造經(jīng)濟(jì)價(jià)值12萬(wàn)元,現(xiàn)在該工廠有煤360t,電力200kw,勞動(dòng)力300個(gè),問(wèn)在這種限制條件下,應(yīng)生產(chǎn)產(chǎn)品A、B各多少千克,才能使所創(chuàng)造的總的經(jīng)濟(jì)價(jià)值最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是
8000
3
 cm3,則正視圖中的h等于
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫(huà)出不等式x+2y≤-2所表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:y=kx+1與圓O:x2+y2=1相交于A,B兩點(diǎn),則“k=1”是“△OAB的面積為
1
2
”的
 
條件.
(填寫(xiě)“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”之一)

查看答案和解析>>

同步練習(xí)冊(cè)答案