【題目】在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是 .
【答案】45、46
【解析】解:由莖葉圖可得甲組共有9個(gè)數(shù)據(jù)中位數(shù)為45
乙組共9個(gè)數(shù)據(jù)中位數(shù)為46
所以答案是45、46
【考點(diǎn)精析】通過靈活運(yùn)用莖葉圖和平均數(shù)、中位數(shù)、眾數(shù),掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽(約公元 225 年—295 年)是魏晉時(shí)期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:“斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:“此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實(shí)這里所謂的“鱉臑(biē nào)”,就是在對長方體進(jìn)行分割時(shí)所產(chǎn)生的四個(gè)面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線與曲線也相切.
(1)求實(shí)數(shù)的值;
(2)設(shè)函數(shù),若且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點(diǎn)集”的序號(hào)是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點(diǎn),為側(cè)棱上的任意一點(diǎn).
(1)若為的中點(diǎn),求證: 面平面;
(2)是否存在點(diǎn),使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以2為首項(xiàng)的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)若,求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心C(1,2),且經(jīng)過點(diǎn)(0,1) (Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(2,﹣1)作圓C的切線,求切線的方程及切線的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn= (an﹣1)(a為常數(shù),且a≠0,a≠1);
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= +1,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)若數(shù)列{bn}是(2)中的等比數(shù)列,數(shù)列cn=(n﹣1)bn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com