18.在一段時間內(nèi),某種商品的價格x(元)和銷售量y(件)之間的一組數(shù)據(jù)如表:如果y與x呈線性相關(guān)且解得回歸直線的斜率為$\hat b$=0.9,則$\hat a$的值為( 。
價格x(元)4681012
銷售量y(件)358910
A.0.2B.-0.7C.-0.2D.0.7

分析 由已知表格中的數(shù)據(jù),我們根據(jù)平均數(shù)公式計算出變量x,y的平均數(shù),根據(jù)回歸直線一定經(jīng)過樣本數(shù)據(jù)中心點(diǎn),可求出$\hat a$值.

解答 解:由$\overline{x}$=$\frac{4+6+8+10+12}{5}$=8,
$\overline{y}$=$\frac{3+5+8+9+10}{5}$=7,
∵回歸直線一定經(jīng)過樣本數(shù)據(jù)中心點(diǎn),
由a=$\overline{y}$-$\hat b$$\overline{x}$=-0.2,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是線性回歸方程,其中根據(jù)回歸直線一定經(jīng)過樣本數(shù)據(jù)中心點(diǎn),是解答的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{|x+1|+|x-1|-m}$的定義域?yàn)镽.
(1)求實(shí)數(shù)m的取值范圍;
(2)若m的最大值為n,當(dāng)正數(shù)a,b滿足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n時,求7a+4b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(  )
A.y=x3,x∈RB.y=sinx,x∈RC.y=-x,x∈RD.y=($\frac{1}{2}$)x,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)甲種產(chǎn)品每噸需耗礦石2t、煤2t;生產(chǎn)乙種產(chǎn)品每噸需耗礦石4t、煤2t.如果甲種產(chǎn)品每噸能獲利600元,乙種產(chǎn)品每噸能獲利800元.工廠在生產(chǎn)這兩種產(chǎn)品的計劃中要求每天消耗礦石不超過8t、煤不超過6t.每天甲、乙兩種產(chǎn)品應(yīng)各生產(chǎn)多少能獲利最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)P(2,4)作圓C:(x-1)2+(y-2)2=5的切線,則切線方程為( 。
A.$\sqrt{3}$x-y=0B.2x-y=0C.x+2y-10=0D.x-2y-8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2+a)•ex在(0,f(0))處的切線與直線y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.為了研究高中學(xué)生對某項(xiàng)體育活動的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計算得K2≈6.84,則有( 。┮陨系陌盐照J(rèn)為“喜歡體育活動與性別有關(guān)系”.
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,則向量$\overrightarrow{CD}$在$\overrightarrow{CA}$方向上的投影為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}中,a1=1,且an+1=2an+1,則a4=( 。
A.7B.9C.15D.17

查看答案和解析>>

同步練習(xí)冊答案