如圖,邊長(zhǎng)為4的正△ABC頂點(diǎn)A在平面α上,B,C在平面α的同側(cè),M為BC的中點(diǎn).若△ABC在平面α上的射影是以A為直角頂點(diǎn)的三角形AB1C1,則M到平面α的距離的取值范圍是
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:計(jì)算題,空間位置關(guān)系與距離
分析:設(shè)出B,C到面的距離,則M到平面α的距離為兩者和的一半,確定ab=8,即可求出M到平面α的距離的取值范圍.
解答: 解:設(shè)B,C到平面α距離分別為a,b,則M到平面α距離為h=
a+b
2

射影三角形兩直角邊的平方分別16-a2,16-b2,
設(shè)線段BC射影長(zhǎng)為c,則16-a2+16-b2=c2,(1)
又線段AM射影長(zhǎng)為
c
2
,所以(
c
2
2+
(a+b)2
4
=12,(2)
由(1)(2)聯(lián)立解得ab=8,
∵a<4,b<4,
∴2<a<4,
∴h=
1
2
(a+
8
a
)∈[2
2
,3)
,
故答案為:[2
2
,3)
點(diǎn)評(píng):本題考查M到平面α的距離的取值范圍,考查學(xué)生分析解決問(wèn)題的能力,確定ab=8是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,an=1+2+22+…+2n-1,則Sn的值為( 。
A、2n-1
B、2n-1-1
C、2n-n-2
D、2n+1-n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件求拋物線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在x軸上,焦點(diǎn)到準(zhǔn)線的距離為6;
(2)準(zhǔn)線方程:x=-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>y>1,且0<a<1,則①ax<ay;②logax>logay;③x-a>y-a;④logxa<logya,其中不成立的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為偶函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-2x.
(1)試比較f(-4)與f(2)的大;
(2)求不等式
f(x)
x
<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=
1+sinx
2+cosx
,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N*),數(shù)列{bn}滿足bn=
1
an-1
(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求{bn}的通項(xiàng)公式及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘船在A處測(cè)得燈塔S在它的北偏東30°的方向,之后它沿正北方向勻速航行,半個(gè)小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔S在它的北偏東75°,且與它相距8
2
海里,此船的航速是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一束光線從原點(diǎn)O(0,0)出發(fā),經(jīng)過(guò)直線l:8x+6y=25反射后通過(guò)點(diǎn)P(-4,3),則反射光線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案