5.函數(shù)y=xex的導(dǎo)數(shù)是(  )
A.y=xexB.y=x+xexC.y=exD.y=(1+x)ex

分析 根據(jù)題意,由導(dǎo)數(shù)的加法計算法則可得y′=(x)′ex+x(ex)′,再化簡計算即可得答案.

解答 解:根據(jù)題意,函數(shù)y=xex,
其導(dǎo)數(shù)y′=(x)′ex+x(ex)′=ex+xex=(1+x)ex,
故選:D.

點評 本題考查導(dǎo)數(shù)的計算,關(guān)鍵是掌握導(dǎo)數(shù)的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列四個命題:
(1)p∧q(2)?p(3)p∨q(4)(?p)∨q
若這四個命題中只有一個是真命題,則這個真命題的序號是( 。
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點為坐標(biāo)原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點M(5,6),且斜率為$\frac{4}{3}$.
(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π)為奇函數(shù),且相鄰兩對稱軸間的距離為$\frac{π}{2}$.
(1)當(dāng)x∈(-$\frac{π}{2}$,$\frac{π}{4}$)時,求f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象沿x軸正方向向右平移$\frac{π}{6}$個單位長度,再把橫坐標(biāo)縮短為原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{6}$]時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若三個數(shù)x1,x2,x3的平均數(shù)$\overline{x}$=40,標(biāo)準(zhǔn)差的平方為1,則樣本x1+$\overline{x}$,x2+$\overline{x}$,x3+$\overline{x}$的平均數(shù)是80,方差是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知的角平分線,且的面積之比為1:2.

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-4y+1=0與3x-4y+7=0的距離為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.容量為20的樣本數(shù)據(jù),分組后的頻數(shù)如表:
分組[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
頻數(shù)234542
則樣本數(shù)據(jù)落在區(qū)間[10,40)的頻率為0.45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知O(0,0),A(-1,3),B(2,-4),$\overrightarrow{OP}$=2$\overrightarrow{OA}$+m$\overrightarrow{AB}$,若點P在y軸上,則m=(  )
A.$\frac{2}{3}$B.$\frac{6}{7}$C.-$\frac{2}{3}$D.-$\frac{6}{7}$

查看答案和解析>>

同步練習(xí)冊答案