橢圓的中心在原點,焦點F在
軸上,離心率為
,點
到F點的距離為
,(1)求橢圓的方程;
(2)直線
與橢圓交于不同的兩點M、N兩點,若
,求實數(shù)
的取值范圍。
(1)
(2)(
,1)
解一:(1)
橢圓方程為
————4分
(2)由
得
由于直線與橢圓有兩個交點,
即
①
解二:(1) 當(dāng)
,設(shè)
P為弦
MN的中點,
從而
又
,則
即
②
把②代入①得
,解得
;
由②得
,解得
.故所求
的取范圍是(
,2).
(2)當(dāng)
時,
,
,解得
故所求
的取范圍是(
,1).
∴當(dāng)
時,
的取值范圍是(
,2),當(dāng)
時,
的取值范圍是(
,1).
————10分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)直線
與橢圓
相交于
A、
B兩個不同的點,與
x軸相交于點
C,記
O為坐標(biāo)原點.
(1)證明:
;
(2)若
的面積取得最大值時的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)已知
m>1,直線
,
橢圓
,
分別為橢圓
的左、右焦點.
(Ⅰ)當(dāng)直線
過右焦點
時,求直線
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點,
,
的重心分別為
.若原點
在以線段
為直徑的圓內(nèi),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
C:
,經(jīng)過橢圓
的右焦點F且斜率為
的直線
l交橢圓
C于A、B兩點,M為線段AB的中點,設(shè)O為橢圓的中心,射線OM交橢圓于N點.
(I)是否存在
,使對任意
,總有
成立?若存在,求出所有
的值;
(II)若
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)
F是橢圓
C:
的左焦點,直線
l為其左準(zhǔn)線,直線
l與
x軸交于點
P,線段
MN為橢圓的長軸,已知
.
(1) 求橢圓
C的標(biāo)準(zhǔn)方程;
(2) 若過點
P的直線與橢圓相交于不同兩點
A、B求證:∠
AFM =∠
BFN;
(3) 求三角形
ABF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.
已知
的頂點
在橢圓
上,
在直線
上,
且
.
(1)求邊
中點的軌跡方程;
(2)當(dāng)
邊通過坐標(biāo)原點
時,求
的面積;
(3)當(dāng)
,且斜邊
的長最大時,求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知橢圓
的離心率為
,右焦點
也是拋物線
的焦點。
(1)求橢圓方程;
(2)若直線
與
相交于
、
兩點。
①若
,求直線
的方程;
②若動點
滿足
,問動點
的軌跡能否與橢圓
存在公共點?若存在,求出點
的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,在等腰梯形ABCD中,AB//CD,且AB=2AD,設(shè)
,以A,B為焦點且過點D的雙曲線的離心率為
,以C,D為焦點且過點A的橢圓的離心率為
,則 ( )
A.隨著角度
的增大,
增大,
為定值
B.隨著角度
的增大,
減小,
為定值
C.隨著角度
的增大,
增大,
也增大
C.隨著角度
的增大,
減小,
也減小
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
的左焦點F的直線
交橢圓于點A、B,交其左準(zhǔn)線于點C,若
,則此直線的斜率為( )
A、
B、
C、
D、
查看答案和解析>>