15.設(shè)全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},則實(shí)數(shù)a=14.

分析 根據(jù)補(bǔ)集的定義,求出集合M,再計(jì)算a的值.

解答 解:由U={1,3,5,7,9},且CUM={3,5,7},
所以M={1,9};
又M={1,a-5},所以a-5=9,
解得a=14.
故答案為:14.

點(diǎn)評(píng) 本題考查了補(bǔ)集的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|-2≤x≤7},B={x|m-1≤x≤2m+1},若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式:|x-1|+2x>4的解集是{x|x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:x-y-1=0是圓C:x2+y2+mx-2y+1=0的對(duì)稱軸,過點(diǎn)A(m,-1)作圓C的一條切線,切點(diǎn)為B,則|AB|=( 。
A.2B.$4\sqrt{2}$C.6D.$2\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠ABC=60°,O為AC,BD的交點(diǎn),且PO⊥平面ABCD,PO=$\sqrt{6}$,點(diǎn)M為側(cè)棱PD上一點(diǎn),且滿足PD⊥平面ACM.
(1)若在棱PD上存在一點(diǎn)N,且BN∥平面AMC,確定點(diǎn)N的位置,并說明理由;
(2)求點(diǎn)B到平面MCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是①②⑤(寫出所有正確命題的編號(hào)).
①當(dāng)$0<CQ<\frac{1}{2}$時(shí),S為四邊形    
②當(dāng)$CQ=\frac{1}{2}$時(shí),S為等腰梯形
③當(dāng)$CQ=\frac{3}{4}$時(shí),S與C1D1的交點(diǎn)R滿足${C_1}{R_1}=\frac{1}{4}$
④當(dāng)$\frac{3}{4}<CQ<1$時(shí),S為六邊形    
⑤當(dāng)CQ=1時(shí),S的面積為$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$a={2.5^{-\frac{3}{2}}}$,$b={log_{\frac{2}{3}}}2.5$,c=2.5-2,則a、b、c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD..a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)A(3,5)、B(4,7)、C(-1,x)三點(diǎn)共線,則實(shí)數(shù)x的值是( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,直三棱柱ABC-A1B1C1的各條棱長均為a,D是側(cè)棱CC1的中點(diǎn).
(1)求證:平面AB1D⊥平面ABB1A1
(2)求平面AB1D與平面ABC所成二面角(銳角)的大。

查看答案和解析>>

同步練習(xí)冊答案