【題目】如圖,ABC,BC邊上的高AM所在的直線方程為x-2y+1=0,A的平分線所在的直線方程為y=0BC相交于點(diǎn)P,若點(diǎn)B的坐標(biāo)為(1,2).

(1)分別求ABBC所在直線的方程;

(2)P點(diǎn)坐標(biāo)和AC所在直線的方程.

【答案】(1) .(2)

【解析】試題分析:(1)得頂點(diǎn),再根據(jù)點(diǎn)斜式方程求出所在直線的方程,

根據(jù)垂直的條件求出直線BC的斜率,再根據(jù)點(diǎn)斜式方程求出所在直線的方程.

(2), 由于x軸是的角平分線,的斜率為, 再根據(jù)點(diǎn)斜式方程求出所在直線的方程.

試題解析:

(1)得頂點(diǎn).

的斜率==.

所以所在直線的方程為,,

BC邊上的高AM所在的直線方程為,

所以直線BC的斜率為,所在的直線方程為.

.

(2)

因?yàn)?/span>x軸是的平分線,

的斜率為所在直線的方程為=,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個(gè)實(shí)數(shù)根x1 , x2滿足x1≤0≤x2≤1,則a2+b2+4a的最小值和最大值分別為(
A. 和5+4
B.﹣ 和5+4
C.﹣ 和12
D.﹣ 和15﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè),

(1)f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)0成立,F(x)的表達(dá)式;

(2)(1)的條件下,當(dāng)x[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

(3)設(shè)mn<0,m+n>0,a>0,f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)

1)求橢圓的方程;

2)設(shè)不過(guò)原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A﹣BF﹣C的平面角的余弦值;
(3)若點(diǎn)M在線段EF上運(yùn)動(dòng),設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年4月23日“世界讀書(shū)日”來(lái)臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.

(Ⅰ)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計(jì)該組數(shù)據(jù)的平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅲ)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加校“中華詩(shī)詞比賽”,經(jīng)過(guò)比賽后從這6人中選拔2人組成該校代表隊(duì),求這2人來(lái)自不同組別的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖,在四棱錐中,直線平面.

(1)求證:直線平面.

(2)若直線與平面所成的角的正弦值為,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案