10.一個幾何體的三視圖如圖所示,正視圖與俯視圖為全等的等腰三角形,側(cè)視圖由半圓和等腰直角三角形組成,則該幾何體的體積為$\frac{π+2}{3}$.

分析 由題意,幾何體為半圓錐與三棱錐的組合體,圓錐底面直徑為2,高為2的圓錐,三棱錐底面為俯視圖,高為1
,即可求出該幾何體的體積.

解答 解:由題意,幾何體為半圓錐與三棱錐的組合體,圓錐底面直徑為2,高為2的圓錐,三棱錐底面為俯視圖,高為1
所以該幾何體的體積為$\frac{1}{2}•$$\frac{1}{3}•π•{1}^{2}•2$+$\frac{1}{3}×$$\frac{1}{2}×2×2×1$=$\frac{π+2}{3}$.
故答案為:$\frac{π+2}{3}$.

點評 本題考查幾何體的體積,考查學(xué)生的計算能力,正確確定直觀圖是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某程序框圖如圖所示,該程序運行輸出的結(jié)果為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=ax3+bx2,當(dāng)x=1時,函數(shù)有極大值3
(1)求a,b的值
(2)求函數(shù)y的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函數(shù)g(x)=f(x)-k(x-1)恰有4個不同的零點,則實數(shù)k的取值范圍是( 。
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,粗線畫出的是一個正方體被兩個平行平面所截后的幾何體的三視圖,圖中三個正方形的邊長為4,則此幾何體的表面積為(  )
A.40+8$\sqrt{3}$B.48+8$\sqrt{3}$C.40+16$\sqrt{3}$D.48+16$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù) f(x)=ex-1-ex.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)設(shè)a∈R,求函數(shù)f(x)在區(qū)間[a,a+1]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造一種標(biāo)準(zhǔn)量器--商鞅銅方升,其三視圖如圖所示(單位:寸),若π取3,其體積為12.6(立方寸),則圖中的x為(  )
A.1.2B.1.6C.1.8D.2.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知F2為橢圓mx2+y2=4m(0<m<1)的右焦點,點A(0,2),點P為橢圓上任意一點,且|PA|-|PF2|的最小值為$-\frac{4}{3}$,則m=$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若${(1-\sqrt{2})^5}$=a+b$\sqrt{2}$(a,b為有理數(shù)),則a+b=( 。
A.32B.12C.0D.-1

查看答案和解析>>

同步練習(xí)冊答案