(2013•許昌二模)已知點(diǎn)P是橢圓:
x2
16
+
y2
8
=1(x≠0,y≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2的角平分線上一點(diǎn),且
F1M
MP
=0,則|OM|的取值范圍是( 。
分析:結(jié)合橢圓
x2
16
+
y2
8
=1的圖象,當(dāng)點(diǎn)P在橢圓與y軸交點(diǎn)處時(shí),點(diǎn)M與原點(diǎn)O重合,此時(shí)|OM|取最小值0.
當(dāng)點(diǎn)P在橢圓與x軸交點(diǎn)處時(shí),點(diǎn)M與焦點(diǎn)F1重合,此時(shí)|OM|取最大值2
2
.由此能夠得到|OM|的取值范圍.
解答:解:由橢圓
x2
16
+
y2
8
=1 的方程可得,c=2
2

由題意可得,當(dāng)點(diǎn)P在橢圓與y軸交點(diǎn)處時(shí),點(diǎn)M與原點(diǎn)O重合,此時(shí)|OM|取最小值0.
當(dāng)點(diǎn)P在橢圓與x軸交點(diǎn)處時(shí),點(diǎn)M與焦點(diǎn)F1重合,此時(shí)|OM|趨于最大值 c=2
2

∵xy≠0,∴|OM|的取值范圍是(0,2
2
).
故選B.
點(diǎn)評(píng):本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,結(jié)合圖象解題,事半功倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)函數(shù)f(x)=Asin(ωx+
π
6
)(ω>0)
的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
π
2
的等差數(shù)列,要得到函數(shù)g(x)=Acosωx的圖象,只需將f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(I)求橢圓C1的方程.
(Ⅱ)過點(diǎn)S(0,-
1
3
)
的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),試問:在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過定點(diǎn)T?若存在求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)已知變量x,y滿足約束條件
x+2y-3≤0
x+3y-3≥0
y-1≤0.
,若目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(3,0)處取到最大值,則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)如圖,已知PE切圓O于點(diǎn)E,割線PBA交圓O于A,B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:
CA
CE
=
PE
PB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)拋物線y=-4x2的焦點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案