【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當(dāng)a=﹣1時(shí),求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2 .
【答案】(Ⅰ)解:a=﹣1時(shí),f(x)=|x+1|+|x﹣2|≥5, x≥2時(shí),x+1+x﹣2≥5,解得:x≥3,
﹣1<x<2時(shí),x+1+2﹣x≥5,無解,
x≤﹣1時(shí),﹣x﹣1﹣x+2≥5,解得:x≤﹣2,
故不等式的解集是{x|x≥3或x≤﹣2}.
(Ⅱ)證明:f(x)=|x﹣ |+|x+2a|≥|x+2a+ ﹣x|=|2a|+| |≥2 ,
當(dāng)且僅當(dāng)|2a|=| |,即a= 時(shí)”=“成立.
【解析】(Ⅰ)當(dāng)a=﹣1時(shí),通過討論x的范圍求出不等式的解集即可;(Ⅱ)根據(jù)絕對(duì)值的性質(zhì)以及基本不等式的性質(zhì)證明即可.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1-200編號(hào),并按編號(hào)順序平均分為40組(1-5號(hào),6-10號(hào)…,196-200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 人.
圖 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅、舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),其主體造型的平面圖是由兩個(gè)相同的矩形ABCD和矩形EFGH構(gòu)成的面積是200 m2的十字形區(qū)域,現(xiàn)計(jì)劃在正方形MNPQ上建一花壇,造價(jià)為4 200元/m2,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)空角上鋪草坪,造價(jià)為80元/m2.
(1)設(shè)總造價(jià)為S元,AD的邊長(zhǎng)為x m,試建立S關(guān)于x的函數(shù)解析式;
(2)計(jì)劃至少要投多少萬元才能建造這個(gè)休閑小區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓內(nèi)接四邊形ABCD中,AB=3,AD=2,∠BCD=1200.
(1)求線段BD的長(zhǎng)與圓的面積.
(2)求四邊形ABCD的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自貢某個(gè)工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤(rùn)20元,生產(chǎn)一件合格品可獲利潤(rùn)10元,生產(chǎn)一件次品要虧損10元.
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤(rùn)的分布列和期望;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象( )
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com