分析 (1)根據(jù)絕對值不等式的幾何意義求出不等式的解集即可;
(2)由題意可得2f(x)-g(x)>0,即a<2|x-1|+|x+3|.設(shè)h(x)=2|x-1|+|x+3|,利用單調(diào)性求的h(x)的最小值,可得a的范圍.
解答 解:(1)原不等式可化為:|x-1|+|x+3|>6,
由絕對值的幾何意義得:
不等式的解集是{x|x>2或x<-4};
(2)y=2f(x)圖象恒在g(x)圖象上方,
故2f(x)-g(x)>0,等價(jià)于a<2|x-1|+|x+3|,
設(shè)h(x)=2|x-1|+|x+3|=$\left\{\begin{array}{l}{-3x-1,x≤-3}\\{5-x,-3<x≤1}\\{3x+1,x>1}\end{array}\right.$,
根據(jù)函數(shù)h(x)的單調(diào)減區(qū)間為(-∞,1]、增區(qū)間為(1,+∞),
可得當(dāng)x=1時(shí),h(x)取得最小值為4,
∴a<4時(shí),函數(shù)y=2f(x)的圖象恒在函數(shù)y=g(x)的上方.
點(diǎn)評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=1是x2-2x+1=0的充分不必要條件 | |
B. | 在△ABC中,A>B是cosA<cosB的必要不充分條件 | |
C. | ?n∈N+,2n2+5n+2能被2整除是假命題 | |
D. | 若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{5}{6}$ | C. | $\frac{4}{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{BC}$ | B. | |$\overrightarrow$|=1 | C. | $\overrightarrow{a}$•$\overrightarrow$=1 | D. | $\overrightarrow{a}$⊥$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com