【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無(wú)數(shù)條
【答案】D
【解析】
取的中點(diǎn),連接,在上任取一點(diǎn),過(guò)在面中,作平行于,其中為線段的中點(diǎn),交于,再過(guò)作,交于,連接,根據(jù)線面平行的判定定理,得到平面,平面,再根據(jù)面面平行的判斷定理得到平面平面,由面面平行的性質(zhì)得到則平面,由于是任意的,故有無(wú)數(shù)條.
如圖:
取的中點(diǎn),連接,則,
連接,在上任取一點(diǎn),
過(guò)在面中,作平行于,
其中為線段的中點(diǎn),交于,
再過(guò)作,交于,連接,
在平面的正投影為,連接,則,
由于,,平面,
平面,
所以平面,
同理由,可推得平面,
由面面平行的判定定理得,平面平面,
則平面.
由于為上任一點(diǎn),故這樣的直線有無(wú)數(shù)條.
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發(fā)布《甘肅省關(guān)于餐飲業(yè)質(zhì)量安全提升工程的實(shí)施意見(jiàn)》,衛(wèi)生部對(duì)16所大學(xué)食堂的“進(jìn)貨渠道合格性”和“食品安全”進(jìn)行量化評(píng)估.滿10分者為“安全食堂”,評(píng)分7分以下的為“待改革食堂”.評(píng)分在4分以下考慮為“取締食堂”,所有大學(xué)食堂的評(píng)分在7~10分之間,以下表格記錄了它們的評(píng)分情況:
(1)現(xiàn)從16所大學(xué)食堂中隨機(jī)抽取3個(gè),求至多有1個(gè)評(píng)分不低于9分的概率;
(2)以這16所大學(xué)食堂評(píng)分?jǐn)?shù)據(jù)估計(jì)大學(xué)食堂的經(jīng)營(yíng)性質(zhì),若從全國(guó)的大學(xué)食堂任選3個(gè),記表示抽到評(píng)分不低于9分的食堂個(gè)數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,,垂足為E,,將沿EC折起到的位置,如圖2所示,使平面平面ABCE.
(1)連結(jié)BE,證明:平面;
(2)在棱上是否存在點(diǎn)G,使得平面,若存在,直接指出點(diǎn)G的位置不必說(shuō)明理由,并求出此時(shí)三棱錐的體積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之和為.
(1)求點(diǎn)的軌跡方程,并在答題卡所示位置畫(huà)出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線,問(wèn)曲線上關(guān)于點(diǎn)對(duì)稱的不同點(diǎn)有幾對(duì)?請(qǐng)說(shuō)明理由.
(3)(文)記(1)得到的軌跡為曲線,若曲線上恰有三對(duì)不同的點(diǎn)關(guān)于點(diǎn)對(duì)稱,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂(lè)節(jié)目,A、B兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將A隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家B隊(duì)的平均分比A隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得“晉級(jí)”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出A隊(duì)第六位選手的成績(jī);
(2)主持人從A隊(duì)所有選手成績(jī)中隨機(jī)抽取2個(gè),求至少有一個(gè)為“晉級(jí)”的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí) 從港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為、小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)
(1)試用含有、的代數(shù)式表示;
(2)要使得所需經(jīng)費(fèi)最少,求和的值,并求出此時(shí)的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列,對(duì)任意都有,(其中k、b、p是常數(shù)).
(1)當(dāng),,時(shí),求;
(2)當(dāng),,時(shí),若,,求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng),,時(shí),設(shè)是數(shù)列的前n項(xiàng)和,,試問(wèn):是否存在這樣的“封閉數(shù)列”,使得對(duì)任意,都有,且.若存在,求數(shù)列的首項(xiàng)的所有取值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,每門(mén)科目滿分均為分.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門(mén)科目中自選門(mén)參加考試(選),每門(mén)科目滿分均為分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查,其中,女生抽取人.
(1)求的值;
(2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在“物理”和“地理”這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的一個(gè)不完整的列聯(lián)表,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(3)在抽取到的名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出名女生,再?gòu)倪@名女生中抽取人,設(shè)這人中選擇“物理”的人數(shù)為,求的分布列及期望.附:,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,…,是由()個(gè)整數(shù),,…,按任意次序排列而成的數(shù)列,數(shù)列滿足(),,,…,是,,…,按從大到小的順序排列而成的數(shù)列,記.
(1)證明:當(dāng)為正偶數(shù)時(shí),不存在滿足()的數(shù)列.
(2)寫(xiě)出(),并用含的式子表示.
(3)利用,證明:及.(參考:.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com