用反證法證明:圓的兩條不是直徑的相交弦不能互相平分.
考點(diǎn):反證法與放縮法
專題:反證法
分析:利用反證法假設(shè)圓的兩條不是直徑的相交弦能互相平分,推出矛盾即可.
解答: 證法一:假設(shè)圓的兩條不是直徑的相交弦能互相平分,
如圖AB,CD為圓O的兩條不是直徑且互相平分的相交弦,交點(diǎn)為E
∵CE=DE,AE=BE,O為圓心
∴OE⊥CD,OE⊥AB
∴CD∥AB
顯然與AB,CD矛盾,故假設(shè)不成立.
∴圓的兩條不是直徑的相交弦不能互相平分.
證法二:證明:假設(shè)AB,CD能互相平分
連接OE
∵AE=BE
∴OE⊥AB
同理OE⊥CD
因?yàn)檫@與過(guò)一點(diǎn)有且有一條直線與已知直線垂直相矛盾,所以假設(shè)錯(cuò)誤,所以圓的兩條不是直徑的相交弦不能互相平分.
點(diǎn)評(píng):本題主要考察了反證法,以及圓的相關(guān)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=3,an+1=2an+1,則a3=( 。
A、3B、7C、15D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(3)=0,則不等式
f(x)-f(-x)
3x
>0的解集為( 。
A、(-∞,3)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-3,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(
3
,
1
2
),離心率e=
3
2

(Ⅰ)求橢圓的方程:
(Ⅱ)若直線y=kx+2與橢圓有兩個(gè)交點(diǎn),求出k的取值范圍;
(Ⅲ)經(jīng)過(guò)橢圓左頂點(diǎn)A的直線交橢圓丁另一點(diǎn)B,線段AB的垂直平分線上的一P滿足
PA
PB
=4,若P點(diǎn)在y軸上,求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),我國(guó)的高鐵技術(shù)發(fā)展迅速,鐵道部門(mén)計(jì)劃在A、B兩城之間開(kāi)通高速列車(chē),假設(shè)在試運(yùn)行期間,每天8:00-9:00,9:00-10:00兩個(gè)時(shí)間段內(nèi)各發(fā)一趟列車(chē)由A城到B城(兩車(chē)發(fā)車(chē)情況互不影響),A城發(fā)車(chē)時(shí)間及其概率如表所示:
發(fā)車(chē)時(shí)間8:108:308:509:109:309:50
概率
1
6
1
2
1
3
1
6
1
2
1
3
若甲、乙兩位旅客打算從A城到B城,假設(shè)他們到達(dá)A城火車(chē)站候車(chē)的時(shí)間分別是周六8:00和周日8:20.(只考慮候車(chē)時(shí)間,不考慮其它因素)
(1)設(shè)乙候車(chē)所需時(shí)間為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)求甲、乙二人候車(chē)時(shí)間相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的表面積為10π,當(dāng)圓錐的底面半徑為何值時(shí),圓錐體積最大?并求出它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某中學(xué)舉辦的校園文化周活動(dòng)中,從周一到周五的五天中,每天安排一項(xiàng)內(nèi)容不同的活動(dòng)供學(xué)生選擇參加,要求每位學(xué)生必須參加三項(xiàng)活動(dòng).其中甲同學(xué)必須參加周一的活動(dòng),不參加周五的活動(dòng),其余的三天的活動(dòng)隨機(jī)選擇兩項(xiàng)參加.乙同學(xué)和丙同學(xué)可以在周一到周五中隨機(jī)選擇三項(xiàng)參加.
(1)求甲同學(xué)選周三的活動(dòng)且乙同學(xué)未選周三的活動(dòng)的概率;
(2)設(shè)X表示甲,乙,丙三名同學(xué)選擇周三的活動(dòng)的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=
1
ax2-2ax+a+1
的定義域?yàn)閷?shí)數(shù)集
R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(-1,1)
 
{y|y=x2}.(填“∈”或“∉”)

查看答案和解析>>

同步練習(xí)冊(cè)答案