10.如圖,E,F(xiàn)分別是三棱柱ABC-A1B1C1的棱AC,A1C1的中點(diǎn),證明:平面AB1F∥平面BC1E.

分析 根據(jù)面面平行的判定定理,先證明線線平行,再證明面面平行.

解答 證明:∵在三棱柱中,E,F(xiàn)分別是AC,A1C1的中點(diǎn),
∴FE∥B1B,F(xiàn)E∥AE,C1F=AE,
∴四邊形FEBB1,C1FAE是平行四邊形,
∴B1F∥BE,AF∥EC1,
B1F∩AF=F,BE∩EC1=E,
∴平面AB1F∥平面BC1E.

點(diǎn)評 本題考查了面面平行的判定定理,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則a2017=2017•2-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)滿足對于任意實(shí)數(shù)x,都有f(-x)=f(x),且當(dāng)x1,x2∈[0,+∞),x1≠x2時,$\frac{{f({x_1})-f({x_2})}}{{{x_1}-x}}>0$都成立,則下列結(jié)論正確的是( 。
A.f(-2)>f(0)>f(1)B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2)D.f(1)>f(-2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.現(xiàn)有四個函數(shù):①y=x•sinx,②y=x•cosx,③y=x•|cosx|,④y=x•2x 的部分圖象如圖,但順序被打亂,則按照從左到右將圖象對應(yīng)的函數(shù)序號正確的排列是①④②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=|x|-2的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知定點(diǎn)${F_1}(-\sqrt{2},0)$,動點(diǎn)B是圓${F_2}:{(x-\sqrt{2})^2}+{y^2}=12$(F2為圓心)上一點(diǎn),線段F1B的垂直平分線交BF2于P.
(1)求動點(diǎn)P的軌跡方程;
(2)若直線y=kx+2(k≠0)與P點(diǎn)的軌跡交于C、D兩點(diǎn).且以CD為直徑的圓過坐標(biāo)原點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知直線l1:ax+2y+6=0和直線${l_2}:x+(a-1)y+{a^2}-1=0$.當(dāng)l1∥l2時,求a的值.
(2)已知點(diǎn)P(2,-1),求過P點(diǎn)且與原點(diǎn)距離最大的直線l的方程,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y-1≥0\\ y-1≤2(x-1)\\ x+y-5≤0\end{array}\right.$,目標(biāo)函數(shù)z=x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓M:(x+1)2+y2=1圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)若過點(diǎn)(1,0)的直線與曲線C交于R,S兩點(diǎn),問是否在x軸上存在一點(diǎn)T,使得當(dāng)k變動時總有∠OTS=∠OTR?若存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案