5.函數(shù)y=cos(x-$\frac{π}{3}$)(x∈[$\frac{π}{6}$,$\frac{2}{3}$π])的最大值是1,最小值是$\frac{1}{2}$.

分析 根據(jù)x∈[$\frac{π}{6}$,$\frac{2}{3}$π],算出x-$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],結(jié)合余弦函數(shù)的圖象求出函數(shù)的最大值和最小值即可.

解答 解:∵x∈[$\frac{π}{6}$,$\frac{2}{3}$π],可得x-$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],
∴當x-$\frac{π}{3}$=0時,即x=$\frac{π}{3}$時,函數(shù)y=cos(x-$\frac{π}{3}$)的最大值是1,
當x-$\frac{π}{3}$=$\frac{π}{3}$,即x=$\frac{2π}{3}$時,函數(shù)y=cos(x-$\frac{π}{3}$)的最小值是$\frac{1}{2}$,
故答案為:1,$\frac{1}{2}$.

點評 本題給出余弦型三角函數(shù),求函數(shù)的最小值,著重考查了余弦函數(shù)的圖象與性質(zhì)等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=2,AC=2$\sqrt{2}$,M是CC1的中點,P是AM的中點,點Q在線段BC1上,且BQ=$\frac{1}{3}$QC1
(1)證明:PQ∥平面ABC;
(2)若直線BA1與平面ABM成角的正弦值為$\frac{2\sqrt{15}}{15}$,求∠BAC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知PC為球O的直徑,A、B是球面上兩點,且AB=2,∠APC=∠BPC=$\frac{π}{4}$,若球O的表面積是16π,則三棱錐P-ABC的體積是( 。
A.$\frac{4\sqrt{3}}{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.tan240°+sin(-420°)的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{3\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.焦點在x軸上,且焦點到準線的距離是2的拋物線的標準方程是( 。
A.y2=8x或y2=-8xB.x2=8y或x=-8yC.x2=4y或x2=-4yD.y2=4x或y2=-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式ax2-2x+1>0對x∈($\frac{1}{2}$,+∞)恒成立,則a的取值范圍為( 。
A.(0,+∞)B.(1,+∞)C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C的圓心在直線x-2y=0上,且圓C經(jīng)過點A(2,5)和B(1,4).
(1)求圓C的方程;
(2)求過點P(5,-1)且被圓C截得的弦長為4$\sqrt{3}$的直線l的方程;
(3)若M點是直線x+y+2=0上的動點,過點M作圓C的切線ME,MF,切點分別為E,F(xiàn),若四邊形MECF的面積取得最小值,求此時的點M的坐標及切線ME的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx,g(x)=f(x)-2ax(a∈R).
(1)當a=0時,求f(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值和最小值;
(2)若對?x∈(1,+∞),g(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)雙曲線$\frac{y^2}{9}$-$\frac{x^2}{b^2}$=1(b>0)的漸近線方程為3x±2y=0,則其離心率為( 。
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案