A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (-∞,$\frac{2}{3}$) | D. | (-∞,-2)∪(1,+∞) |
分析 確定函數(shù)在R上單調(diào)遞增,從而可得不等式2-2a>a,即可求實數(shù)a的取值范圍.
解答 解:∵函數(shù)ff(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{4x-{x}^{2},x<0}\end{array}\right.$,
∴函數(shù)在R上單調(diào)遞增,
∵f(2-2a)>f(a),
∴2-2a>a,
解得a<$\frac{2}{3}$
故選:C
點評 本題主要考查了分段函數(shù)的圖象及其性質(zhì),以及一元二次不等式的解法,解題的關(guān)鍵判定函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $2\sqrt{5}$ | C. | $\sqrt{17}$ | D. | $\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1]∪[1,+∞) | B. | (-∞,-1]∪[0,+∞) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com