【題目】已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線和
A.垂直B.平行C.異面D.相交
【答案】A
【解析】
本題可以從直線與平面的位置關(guān)系入手:直線與平面的位置關(guān)系可以分為三種:直線在平面內(nèi)、直線與平面相交、直線與平面平行,在這三種情況下再討論平面中的直線與已知直線的關(guān)系,通過(guò)比較可知:每種情況都有可能垂直.
當(dāng)直線l與平面相交時(shí),
平面內(nèi)的任意一條直線與直線l的關(guān)系只有兩種:異面、相交,此時(shí)就不可能平行了,故B錯(cuò).
當(dāng)直線l與平面平行時(shí),
平面內(nèi)的任意一條直線與直線l的關(guān)系只有兩種:異面、平行,此時(shí)就不可能相交了,故D錯(cuò).
當(dāng)直線a在平面內(nèi)時(shí),
平面內(nèi)的任意一條直線與直線l的關(guān)系只有兩種:平行、相交,此時(shí)就不可能異面了,故C錯(cuò).
不管直線l與平面的位置關(guān)系相交、平行,還是在平面內(nèi),
都可以在平面內(nèi)找到一條直線與直線垂直,
因?yàn)橹本在異面與相交時(shí)都包括垂直的情況,故A正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓的圓心為A,直線l過(guò)點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過(guò)B作AC的平行線交AD于點(diǎn)E.
(I)證明為定值,并寫出點(diǎn)E的軌跡方程;
(II)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過(guò)B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)數(shù)列{an}從哪一項(xiàng)開(kāi)始小于0;
(2)求a1+a3+a5+…+a19值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,ABEF,矩形ABCD所在平面和圓O所在平面垂直,已知AB=2,EF=1.
(I)求證:平面DAF⊥平面CBF;
(II)若BC=1,求四棱錐F-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,和均為邊長(zhǎng)為的等邊三角形.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).
(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn)且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號(hào)的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級(jí)開(kāi)設(shè)冰球課程,為了解學(xué)生對(duì)冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對(duì)冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對(duì)冰球運(yùn)動(dòng)沒(méi)有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)冰球是否有興趣與性別有關(guān)”?
(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔R荒昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每次抽取1名學(xué)生,抽取5次,記被抽取的5名學(xué)生中對(duì)冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附表:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com