已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項(xiàng)和Sn的最大值為________.

15
分析:根據(jù)題意結(jié)合等比數(shù)列的通項(xiàng)公式,可得an=26-n,再取以2為底的對數(shù)得log2an=6-n,得到{log2an}是以5為首項(xiàng),公差為-1的等差數(shù)列,利用等差數(shù)列的求和公式并結(jié)合二次函數(shù)在正整數(shù)范圍內(nèi)求最值,可得本題的答案.
解答:設(shè)等比數(shù)列的公比為q
∵等比數(shù)列中,a1=32,a4=4,
∴q3==,得q=,所以等比數(shù)列的an=32×(n-1=26-n,
由此可得log2an=6-n,數(shù)列{log2an}構(gòu)成以5為首項(xiàng),公差為-1的等差數(shù)列
∴數(shù)列{log2an}的前n項(xiàng)和Sn=5n-=(-n2+11n)
∵n∈N*,∴當(dāng)n=5或6時,Sn的最大值為15
故答案為:15
點(diǎn)評:本題給出等比、等差數(shù)列模型,求一個數(shù)列前n項(xiàng)和的最大值,著重考查了等比數(shù)列、等差數(shù)列的通項(xiàng)與求和等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是( 。
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項(xiàng),且a1a2a3=1.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項(xiàng)和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項(xiàng)公式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項(xiàng)數(shù)列,其首項(xiàng)a1=3,前n項(xiàng)和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項(xiàng)a2及通項(xiàng)公式;
(2)設(shè)bn=
1
Sn
,記數(shù)列{bn}的前n項(xiàng)和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習(xí)冊答案