給出下列結(jié)論:
①當(dāng)a<0時(shí),數(shù)學(xué)公式=a3
數(shù)學(xué)公式=|a|(n>1,n∈N?,n為偶數(shù));
③函數(shù)f(x)=數(shù)學(xué)公式-(3x-7)0的定義域是{x|x≥2且x≠數(shù)學(xué)公式;
④若2x=16,3y=數(shù)學(xué)公式,則x+y=7.
其中正確的是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ③④
  4. D.
    ②④
B
分析:根據(jù)a的取值判定①②的正誤,求出定義域判定③,求出x的值判定④,最后確定結(jié)果.
解答:∵a<0時(shí),>0,a3<0,∴①錯(cuò);
②顯然正確;解,得x≥2且x≠,∴③正確;
∵2x=16,∴x=4,∵3y==3-3,∴y=-3,
∴x+y=4+(-3)=1,∴④錯(cuò).故②③正確.
故選B
點(diǎn)評(píng):本題考查有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),函數(shù)的定義域及其求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①當(dāng)a<0時(shí),(a2)
3
2
=a3;
nan
=|a|(n>1,n∈N?,n為偶數(shù));
③函數(shù)f(x)=(x-2)
1
2
-(3x-7)0的定義域是{x|x≥2且x≠{x|x≥2且x≠
7
3
}
;
④若2x=16,3y=
1
27
,則x+y=7.
其中正確的是( 。
A、①②B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:①y=1是冪函數(shù);    
②定義在R上的奇函數(shù)y=f(x)滿足f(0)=0
③函數(shù)f(x)=lg(x+
x2+1
)
是奇函數(shù)  
④當(dāng)a<0時(shí),(a2)
3
2
=a3

⑤函數(shù)y=1的零點(diǎn)有2個(gè);
其中正確結(jié)論的序號(hào)是
②③
②③
(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域是(0,+∞)的函數(shù)f(x)滿足;
(1)對(duì)任意x∈(0,+∞),恒有f(3x)=3f(x)成立;
(2)當(dāng)x∈(1,3]時(shí),f(x)=3-x.給出下列結(jié)論:
①對(duì)任意m∈Z,有f(3m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(3n+1)=0;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“?k∈Z,使得(a,b)⊆(3k,3k+1).”
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:

①當(dāng)a<0時(shí),(a2)a3;

=|a|(n>1,n∈N*,n為偶數(shù));

③函數(shù)f(x)=(x-2) -(3x-7)0的定義域是

{x|x≥2且x};

④若2x=16,3y,則xy=7.

其中正確的是(  )

A.①②  B.②③

C.③④  D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列結(jié)論:①y=1是冪函數(shù);    
②定義在R上的奇函數(shù)y=f(x)滿足f(0)=0
③函數(shù)f(x)=lg(x+
x2+1
)
是奇函數(shù)  
④當(dāng)a<0時(shí),(a2)
3
2
=a3

⑤函數(shù)y=1的零點(diǎn)有2個(gè);
其中正確結(jié)論的序號(hào)是______(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案