【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若B=60°,b2=ac,則△ABC一定是( )
A.直角三角形
B.鈍角三角形
C.等邊三角形
D.等腰直角三角形
【答案】C
【解析】解:由余弦定理可得:b2=a2+c2﹣2accosB=a2+c2﹣ac=ac, 化為(a﹣c)2=0,解得a=c.
又B=60°,
可得△ABC是等邊三角形,
故選:C.
利用余弦定理、等邊三角形的判定方法即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一個(gè)袋子中含有不同標(biāo)號(hào)的紅、黑兩種顏色的小球共有8個(gè),從紅球中選取2粒,從黑球中選取1粒,共有30種不同的選法,其中黑球至多有( )
A.2粒
B.4粒
C.3粒
D.5粒
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=2,an+1=an+n(n∈N+),則a4的值為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)學(xué)歸納法證明1+2+3+…+(2n+1)=(n+1)(2n+1)時(shí),從n=k到n=k+1,左邊需增添的代數(shù)式是( )
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=x2+2xB.y=x3C.y=lnxD.y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮數(shù)列{an}由k個(gè)不同的數(shù)組成,Sn為{an}的前n項(xiàng)和,若對(duì)任意n∈N* , Sn∈{2,3},則k的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}中,Sn是它的前n項(xiàng)之和,且S6<S7 , S7>S8 , 則: ①此數(shù)列的公差d<0
②S9一定小于S6
③a7是各項(xiàng)中最大的一項(xiàng)
④S7一定是Sn中的最大值.
其中正確的是(填入你認(rèn)為正確的所有序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)半徑為2的球O表面上一點(diǎn)A作球O的截面,若OA與該截面所成的角是60°,則該截面的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有編號(hào)分別為1,2,3,…,2n的2n(n∈N*)個(gè)小球,現(xiàn)將袋中的小球分給A,B,C三個(gè)盒子,每次從袋中任意取出兩個(gè)小球,將其中一個(gè)放入A盒子,如果這個(gè)小球的編號(hào)是奇數(shù),就將另一個(gè)放入B盒子,否則就放入C盒子,重復(fù)上述操作,直到所有小球都被放入盒中,則下列說(shuō)法一定正確的是( )
A.B盒中編號(hào)為奇數(shù)的小球與C盒中編號(hào)為偶數(shù)的小球一樣多
B.B盒中編號(hào)為偶數(shù)的小球不多于C盒中編號(hào)為偶數(shù)的小球
C.B盒中編號(hào)為偶數(shù)的小球與C盒中編號(hào)為奇數(shù)的小球一樣多
D.B盒中編號(hào)為奇數(shù)的小球多于C盒中編號(hào)為奇數(shù)的小球
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com