A. | 5 | B. | 4 | C. | 8 | D. | 6 |
分析 由x-1>0,y=$\frac{4}{x-1}$+x=$\frac{4}{x-1}$+x-1+1≥2$\sqrt{\frac{4}{x-1}•(x-1)}$+1=5,即可求得函數(shù)的最小值.
解答 解:由x>1,即x-1>0,
y=$\frac{4}{x-1}$+x=$\frac{4}{x-1}$+x-1+1≥2$\sqrt{\frac{4}{x-1}•(x-1)}$+1=5,
當(dāng)且僅當(dāng)$\frac{4}{x-1}$=x-1,即x=3時,函數(shù)y=$\frac{4}{x-1}$+x取最小值,最小值為5,
故答案選:A.
點評 本題考查基本不等式的應(yīng)用,考查基本不等式的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{2}{3}$) | C. | ($\frac{2}{3}$,1) | D. | ($\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{3}$和$\frac{22π}{3}$ | B. | $-\frac{7π}{9}$和$\frac{11π}{9}$ | C. | $\frac{20π}{3}$和$\frac{22π}{9}$ | D. | $\frac{π}{2}$和$-\frac{π}{2}+2kπ,k∈Z$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | 16 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2π | |
B. | f(x)的圖象關(guān)于直線$x=\frac{π}{8}$ | |
C. | 對稱f(x)的最大值為$\sqrt{2}$ | |
D. | 將f(x)的圖象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$個單位長度后會得到一個奇函數(shù)的圖象 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com