11.觀察下列不等式:$\sqrt{1•2}<\frac{3}{2}$,$\sqrt{1•2}+\sqrt{2•3}$<4,$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}<\frac{15}{2}$,
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$<12,…
照此規(guī)律,第n個(gè)不等式為$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

分析 由題設(shè)中所給的不等式歸納出它們的共性,即可得出結(jié)論.

解答 解:由歸納推理可得,第n個(gè)不等式為$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.
故答案為$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

點(diǎn)評(píng) 本題考查歸納推理,解題的關(guān)鍵是根據(jù)所給的不等式得出它們的共性,由此得出通式,本題考查了歸納推理考察的典型題,具有一般性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,方格紙上正方形小格的邊長為1,圖中粗實(shí)線畫出的是由一個(gè)正方體截得的一個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在極坐標(biāo)系中,以下是圓ρ=2cosθ的一條切線的是(  )
A.ρsinθ=2B.ρsinθ=-2C.ρcosθ=-2D.ρcosθ=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.曲線y=x2的一種參數(shù)方程是( 。
A.$\left\{{\begin{array}{l}{x={t^2}}\\{y={t^4}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=sint}\\{y={{sin}^2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)在x=1處的導(dǎo)數(shù)為1,則$\lim_{x→∞}\frac{f(1-x)-f(1+x)}{3x}$的值為( 。
A.3B.-$\frac{3}{2}$C.$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列推理是演繹推理的是(  )
A.由 ${a_1}=1,{a_{n+1}}=\frac{a_n}{{1+{a_n}}}$,因?yàn)?{a_1}=1,{a_2}=\frac{1}{2},{a_3}=\frac{1}{3},{a_4}=\frac{1}{4}$,故有${a_n}=\frac{1}{n}(n∈{N^*})$
B.科學(xué)家利用魚的沉浮原理制造潛艇
C.妲己惑紂王,商滅;西施迷吳王,吳滅;楊貴妃迷唐玄宗,致安史之亂,故曰:“紅顏禍水也”
D.《論語•學(xué)路》篇中說:“名不正,則言不順;言不順,則事不成;事不成,則禮樂不興;禮樂不興,則刑罰不中;刑罰不中,則民無所措手足;所以,名不正,則民無所措手足”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.圖1是一個(gè)水平擺放的小正方體木塊,圖2,圖3是由這樣的小正方體木塊疊放而成的,按照這樣的規(guī)律放下去,至第六個(gè)疊放的圖形中,小正方體木塊總數(shù)就是( 。
A.25B.66C.91D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.自極點(diǎn)O任意作一條射線與直線ρcosθ=3相交于點(diǎn)M,在射線OM上取點(diǎn)P,使得|OM|•|OP|=12,求動(dòng)點(diǎn)P的極坐標(biāo)方程,并把它化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若數(shù)列{An}:a1,a2,…,an(n≥2)滿足|ak+1-ak|=1(k=1,2,3,…,n-1),數(shù)列An為G數(shù)列,記S(An)=a1+a2+…+an
(1)寫出一個(gè)滿足a1=a7=0,且S(A7)>0的G數(shù)列An;
(2)若a1=2,n=2016,證明:G數(shù)列An是遞增數(shù)列的充要條件是an=2017;
(3)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的G數(shù)列An,使得S(An)=0?如果存在,寫出一個(gè)滿足條件的G數(shù)列An;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案