12.方程$(x+y-2)\sqrt{{x^2}+{y^2}-9}=0$表示的曲線是( 。
A.一條直線和一個(gè)圓B.一條直線和半個(gè)圓
C.兩條射線和一個(gè)圓D.一條線段和半個(gè)圓

分析 將方程等價(jià)變形,即可得出結(jié)論.

解答 解:由題意方程$(x+y-2)\sqrt{{x^2}+{y^2}-9}=0$可化為$\sqrt{{x}^{2}+{y}^{2}-9}$=0或x+y-2=0(x2+y2-9≥0)
∴方程$(x+y-2)\sqrt{{x^2}+{y^2}-9}=0$表示的曲線是兩條射線和一個(gè)圓.
故選:C.

點(diǎn)評(píng) 本題考查軌跡方程,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.雙曲線的中心在原點(diǎn),離心率等于2,若它的一個(gè)頂點(diǎn)恰好是拋物線y2=8x的焦點(diǎn),則雙曲線的方程為$\frac{{x}^{2}}{1}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行圖中程序框圖,如果輸入x1=2,x2=3,x3=7,則輸出的T值為( 。
A.0B.4C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖是一個(gè)幾何體的三視圖,尺寸如圖所示,(單位:cm),則這個(gè)幾何體的體積是( 。
A.(10π+36)cm3B.(11π+35)cm3C.(12π+36)cm3D.(13π+34)cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=-3lnx+ax2+bx(a>0,b∈R),若對(duì)任意x>0都有f(x)≥f(3)成立,則( 。
A.lna>-b-1B.lna≥-b-1C.lna≤-b-1D.lna<-b-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則俯視圖的面積為( 。
A.$5\sqrt{3}$B.$\frac{{5\sqrt{3}}}{2}$C.5D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f( x)=ax3-bx+c為奇函數(shù),則c=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)向量$\overrightarrow a,\overrightarrow b$的夾角為135°,且$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$;
(1)求$\overrightarrow a•\overrightarrow b$的值;
(2)設(shè)$\overrightarrow c=x\overrightarrow a-\overrightarrow b(x∈R)$,當(dāng)$|\overrightarrow c|$取得最小值時(shí),求向量$\overrightarrow c$與$\overrightarrow b$夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且點(diǎn)(1,$\frac{3}{2}$)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m(k,m∈R)與橢圓E只有一個(gè)公共點(diǎn)P.
(1)用實(shí)數(shù)k,m表示點(diǎn)P的坐標(biāo);
(2)若動(dòng)直線l與直線x=4相交于點(diǎn)Q,問(wèn):在x軸上是否存在定點(diǎn)M,使得MP⊥MQ?若存在,求出定點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案