14.如圖,偶函數(shù)f(x)的圖象如字母M,奇函數(shù)g(x)的圖象如字母N,若方程f(g(x))=0,g(f(x))=0的實根個數(shù)分別為m、n,則m+n=(  )
A.12B.18C.16D.14

分析 若方程f(g(x))=0,則g(x)=-$\frac{3}{2}$,或g(x)=0,或g(x)=$\frac{3}{2}$,進(jìn)而可得m值;不妨僅g(x)的三個零點分別為-a,0,a(0<a<1),若g(f(x))=0,則f(x)=-a,或f(x)=0,或f(x)=a,進(jìn)而得到n值

解答 解:若方程f(g(x))=0,則g(x)=-$\frac{3}{2}$,或g(x)=0,或g(x)=$\frac{3}{2}$,
此時方程有9個解;
不妨僅g(x)的三個零點分別為-a,0,a(0<a<1)
若g(f(x))=0,則f(x)=-a,或f(x)=0,或f(x)=a,
此時方程有9個解;
即m=n=9,
∴m+n=18,
故選:B.

點評 本題考查的知識點是數(shù)形結(jié)合思想,方程的根與函數(shù)零點之間的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C:$\frac{x^2}{m}$+$\frac{y^2}{2-m}$=1(m≠0,m≠2),說明曲線C的形狀,若是橢圓或雙曲線,請說明焦點在哪個坐標(biāo)軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知cosα=-$\frac{1}{2}$,α∈(0°,180°),則α等于( 。
A.60°B.120°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點分別為F1,F(xiàn)2,點P為橢圓上不同于左右頂點的任意一點,△F1PF2的重心為G,內(nèi)心為I,且有$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x+lg$\sqrt{{x}^{2}+1}$+x)的定義域是R.
(1)判斷f(x)在R上的單調(diào)性,并證明;
(2)若不等式f(m•3x)+f(3x-9x-4)<0對任意x∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足$\frac{ln{a}_{1}}{3}$•$\frac{ln{a}_{2}}{6}$•$\frac{ln{a}_{3}}{9}$•…•$\frac{ln{a}_{n}}{3n}$=$\frac{3n}{2}$(n∈N*),則 a10=( 。
A.e30B.e${\;}^{\frac{100}{3}}$C.e${\;}^{\frac{110}{3}}$D.e40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x-a|-ax,其中a>0.
(1)解不等式f(x)<0;
(2)當(dāng)0<a≤1時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,c=($\frac{3}{5}$)${\;}^{\frac{3}{5}}$,則a,b,c大小關(guān)系是( 。
A.a>b>cB.c>a>bC.b>c>aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式log2(4-x)>log2(3x)的解集為(0,1).

查看答案和解析>>

同步練習(xí)冊答案