如圖所示,已知三棱柱ABCA1B1C1,
(1)若M、N分別是AB,A1C的中點,求證:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱長均為2,∠B1BA=∠B1BC=60°,P為線段B1B上的動點,當PA+PC最小時,求證:B1B⊥平面APC.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐中,底面是平行四邊形,,平面,,,是的中點.
(1)求證:平面;
(2)若以為坐標原點,射線、、分別是軸、軸、軸的正半軸,建立空間直角坐標系,已經計算得是平面的法向量,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,,,,是棱的中點.
(1)求證:平面;
(2)求證:平面;
(3)在棱上是否存在一點,使得平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分別在線段上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點F,滿足EF//平面A1ABB1,若存在,請指出點F的位置,并給出證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°,E為線段AB的中點,將△ADE沿直線DE翻折成△A′DE,使平面A′DE⊥平面BCD,F為線段A′C的中點.
(1)求證:BF∥平面A′DE;
(2)設M為線段DE的中點,求直線FM與平面A′DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M為A1B與AB1的交點,N為棱B1C1的中點.
(1)求證:MN∥平面AA1C1C;
(2)若AC=AA1,求證:MN⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.
(1)求證:;
(2)在棱上確定一點,使、、、四點共面,并求此時的長;
(3)求平面與平面所成二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com