17.函數(shù)f(x)=2x3+x2-6x-3的零點(diǎn)為-$\frac{1}{2}$,$\sqrt{3}$,-$\sqrt{3}$.

分析 通過因式分解,令f(x)=0,求出函數(shù)的零點(diǎn)即可.

解答 解:f(x)=2x3+x2-6x-3=2x(x2-3)+(x2-3)=(x2-3)(2x+1),
令f(x)=0,解得:x=-$\frac{1}{2}$,$\sqrt{3}$,-$\sqrt{3}$,
故答案為:-$\frac{1}{2}$,$\sqrt{3}$,-$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)問題,考查因式分解,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知?jiǎng)訄A過定點(diǎn)F(0,1),且與定直線y=-1相切.
(Ⅰ)求動(dòng)圓圓心M所在曲線C的方程;
(Ⅱ)直線l經(jīng)過曲線C上的點(diǎn)P(x0,y0),且與曲線C在點(diǎn)P的切線垂直,l與曲線C的另一個(gè)交點(diǎn)為Q,當(dāng)x0=$\sqrt{2}$時(shí),求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個(gè)圖象中,不是函數(shù)圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{{\sqrt{x-1}}}$+(x-2)0+log2(x-1)定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)∪(2,+∞)B.(1,+∞)C.(1,2)∪(2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若2a2,a3,a2+2成等差數(shù)列,求an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(Ⅰ)求值:(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(Ⅱ)已知二次函數(shù)f(x)滿足f(x+1)+f(x-1)=x2-4x,試求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若函數(shù)f(x)=-x+b的圖象與函數(shù)g1(x)=x2(0≤x≤1)的圖象相交于點(diǎn)A,與函數(shù)g2(x)=$\sqrt{x}$(0≤x≤1)的圖象相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知兩個(gè)等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別為Sn,S'n,若$\frac{S_n}{{{{S'}_n}}}=\frac{2n+3}{3n-1}$,則$\frac{a_9}{b_9}$=$\frac{37}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{sin2x(sinx+cosx)}{cosx}$=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案